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Many fundamental geometrical and physical concepts are represented by
scalar or tensor quantities. The mathematical formulation of a wide
variety of laws of a geometrical or physical nature is accomplished with
the aid of scalar or vector relations. The tensorial expression of equa-
tions permits the formulation of laws which are independent of the
choice of coordinate systems. Tensor characteristics and tensor equa-
tions have additional invariant properties and special peculiarities
when the geometric or physical phenomena, objects, laws, and properties
admit some symmetry.

Methods are developed below for automatically taking symmetry proper-
ties into account both in linear and nonlinear problems by suitable de-
fining parameters which are associated with the basic assumptions in the
formulation of the problem under study. Appropriate conclusions are
arrived at concerning the effects of symmetry by the use of methods
which are analogous to those developed in the closely related theory of
similarity and dimensional analysis [1).

The present work is devoted to the solution of two basic problems.

a) It is shown that the properties of textured [oriented] media and
crystals can be specified with the aid of tensors. Simple systems of
tensors are actually determined as parametric geometrical quantities
which define and specify the symmetry properties for all seven types of
oriented media and all 32 classes of crystals.

b) The general form is determined for the expression of tensors of
arbitrary order when these tensors may be regarded as functions of a
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system of arguments consisting of a number of scalars and several in-
dependent tensors of various orders.

Both problems are intimately related to the consideration of the
system of coordinate transformations which generate some symmetry group.

Symmetry problems play a fundamental role in physics. The specializa-
tion of the forms of functions and of tensors of various orders which
are invariant under suitable symmetry groups is investigated in many
works. The appropriate conclusions are applied and have contributed to
the discovery of new effects in a number of different applications. A
summary of the basic data for different concrete examples is contained
in a book by Nye [2]. Detailed references to the earlier literature may
be found in the same book.

In algebra a general theory is developed for obtaining and describ-
ing the properties of polynomial scalar invariants under finite trans-
formation groups. These polynomials are formed from the components of
tensors and vectors. It is shown [3] that for every finite orthogonal
group G there always exists an integral rational basis (integrity basis)
of invariant polynomials. This integrity basis is a finite number of
scalar invariant polynomials formed from the components of given tensors
and vectors in such a way that any invariant polynomial formed from the
same components can be expressed in terms of them. An integrity basis
forms a system of invariants with respect to the finite number of trans-
formations of the group G. It is apparent, however, that its elements,
polynomials in the components of given tensors, are not, in general, in-
variant under any arbitrary coordinate transformation, although such in-
variants are included in the basis.

The number of elements of an integrity basis, which depends only on
the group and on the choice of given tensors and vectors, is generally
larger than the number of independent variable components of the given
system of tensors and vectors. Therefore, the elements of an integrity
basis are, in general, functionally dependent.

The actual construction of an integrity basis for the groups associ-
ated with oriented media and crystals has been carried out in works by
Doring [4), Smith and Rivlin [5], Pipkin and Rivlin [6], and Sirotin
[7,8]. It is shown below that in order to construct tensor functions,
it is necessary and sufficient to use a complete system of functionally
independent simultaneous invariants [9,10] formed from the components
of the tensors which specify the symmetry groups and the other tensor
arguments.

The construction of examples of scalars and tensors with specified
symmetry is given in papers by Smith and Rivlin [5.6,11,12], in the
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book by Bhagavantam and Venkatarayudu [13], and in the works of Jahn
(14, Shubnikov [15,16,17), and Sirotin [7,8,18,19]. In a paper by
Koptsik [20] various tensors of a physical nature are considered. He de-
fines the symmetry of a crystal as "the intersection group of the sym-
metries of the existing properties of a crystal which are observed at a
given instant," (p.935).

Tensors which are functions of tensor arguments are considered in
the case of second-order tensors. In this case, functional relations
between tensors lead to functional relations between square matrices.
In this area the fundamental results reduce to the Cayley-Hamilton
formula and to its generalizations to several matrix arguments [21-24,
25-28] (second-order tensors). Basically, however, in these generaliza-
tions only polynomial functions of matrices and components of tensors
are considered.

1. Fundamental concepts. As is well known, tensors may be re-
garded as invariant objects which are independent of the choice of the
coordinate system and which may be defined by the scalar components in
a suitable basis. A tensor basis may be introduced in various ways; 1in
particular, the polyadic product of the base vectors of a coordinate
system in some manifold-space can always be taken as a basis.

For simplicity in what follows we shall consider only tensors in
three-dimensional space. Let x!, x?, x*® be coordinates of a point of
the space and 3;, 3,, ?3 be the vectors of a covariant basis.* We shall
denote a tensor of order r by H and its components in the coordinate
basis 3,, 9,5, 33 by F°t---% . In this paper we shall use the representa-
tion of the tensor H in the form of the sum

H = H* “a,. ..o, (1.1)

where a summation is understood with respect to all the indices «,

.«., a,, which can take on the values 1, 2, 3. In the general case, the
formula (1.1) contains 3" linearly independent terms, each of which may
be considered as a special tensor.

We note that different continuous manifolds and the corresponding
different base vectors can be introduced for a single coordinate system.
For the same coordinates x' and the same components %1 %r it is
possible to consider different tensors corresponding to the various
bases.

In particular, such manifolds may be considered as different states

* The coordinate system is arbitrary.
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of a given medium having an imbedded Lagrangean coordinate system which
moves and deforms with time [26}. Cases are also possible where for a
given Lagrangean coordinate system the various manifolds which correspond
have different metrics. Thus, it is possible to consider simultaneously
different tensors with given components which are the same, but in
different bases and in different spaces, some of which may be Euclidean
and others non-Euclidean (Kondo, Kroner, Bilby, and others).

The theory helow will be developed for tensors in metric spaces,

Ve shall denote the distance between two points with the coordinates
x' and x' + dx? by ds. Let the quantity ds? be defined by the formula
ds? = g ~dx®dx’. The matrix l‘gij ” forms the covariant components of
the fundamental metric tensor g. The inverse matrix ” g‘Jl, gives the
contravariant components. The contravariant base vectors %' are deter-
mined from the formulas 8% = giy,.

The following fermulas are valid for the fundamental metric tensor g:
g = g.p93°98 = goBy, 35 = 833,98 (6} is the Kronecker delta) (1.2)

Raising and lowering of the scripts of components of the various
tensors is accomplished with the aid of the g;; and g'’. The formula
(1.1) can be presented in the form:

k4
H =3 ks H, (1.3)

8=1
where the ks are scalars and the H; are certain tensors of order r.

Later we shall always assume that the tensors H_ are linearly inde-
pendent. It is obvious that p<( 3.

Let the components of the tensor H be functions of the components of
the m tensors

ay..dp

T =Ty 9, .+ -3 (x=1,...,m) (1.4)

Py
the functions remaining the same, independently of the choice of the
coordinate system. The integers p;, ..., p, determine the orders of the
tensors T,.. In the general case p,, ..., p, are different and are not
equal to r. By definition, we then call the tensor H a function of the
tensors T}, ..., T,. The tensors T, among which there may be both vari-
able and constant tensors, are the tensor arguments of the tensor func-
tion H.

If it is possible to form 3" linearly independent temsors H  of
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order r from the tensors T, then in this case the tensor H will

satisfy (1.3), in which the scalars k  will depend only upon the simul-
taneous invariants of the system of tensors T, and possibly upon given
additional scalar arguments. Below we shall consider only those tensor
functions for which the tensor g is included among the tensor arguments

T..
The tensors H_ can be constructed from the tensors T, with the aid
of two tensor operations: multiplication and contraction. The operation

of contraction with respect to any two indices is always possible by
virtue of the presence of the tensor g among the tensor arguments. Any
multiplication of several tensors leads to a tensor whose order is equal
to the sum of the orders of the factors. Contraction with respect to 21
indices lowers the order of a tensor by 2I.

Mult1pllcat1on and an obvious contraction of a given tensor T having
components T kil... by the tensor S with components 518‘ results in the
tensor T* of the same order with the components

kil __ pikil...

The tensor T* is called an isomer of the tensor T. The operation of
interchange of indices can be reduced to multiplication by the funda-
mental tensor and contraction. By definition, a tensor obtained as a
result of permutation of several indices is also called an isomer of
the tensor T.

Methods are given below to construct general formulas of the type
(1.3) for tensor functions. To this end, it is required to construct a
linearly independent tensor basis H_ (s =1, ..., p) in terms of the
tensor arguments (1.4). The construction of the basis H; from the de-
fining tensors will be accomplished with the aid of the operations of
multiplication and contraction.

2. Symmetry groups of tensors. The contravariant components
al._'ar . . . e
A of the tensor A admit the symmetry group G which is specified

by the coordinate transformation matrices*

; 7}
I} (a= 2, =y

* For simplicity the enumeration of the elements of the matrices of
the group G is omitted, so that ali is written instead of a(v)
where v = 1, ..., h and h is the number of elements of the group G.
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if for each matrix of the group G the following equation is satisfied:
Ai,...i,.z___ At ai,al‘ . aira,. (21)

If the fundamental tensor g admits a group, the group is called
orthogonal. In other words, the transformation matrices of orthogonal
groups satisfy the equivalent systems of equations

g = geba’ua’y, 8ij = gapalia (2.2)

It is easy to verify that if the group G is orthogonal, then the com-
ponents of the tensor A having any structure of the indices are in-
variant* under the coordinate transformations generating the group G
provided that the condition (2.1) is met for the contravariant compo-
nents of A. Therefore, for orthogonal transformations it is possible to
speak simply of symmetry of a tensor or of invariance of all its com-
ponents relative to the group G.

The set of all orthogonal transformations under which a tensor 4 is
invariant forms the symmetry group of the tensor A. The symmetry group
of a tensor may consist of only the identity transformation. For an
arbitrary second-order tensor (non-symmetrical, A') # AJ') the symmetry
group consists of two elements: the identity transformation and the
transformation of central inversion. For an arbitrary symmetric second-
order tensor the symmetry group coincides with the group of self-trans-
formations of a general ellipsoid. If the tensor ellipsoid is an
ellipsoid of revolution the symmetry group is infinite. A spherical
(1sotropic) tensor of second order has a symmetry group which coincides
with the full orthogonal group of transformations, just like the funda-
mental tensor g.

Let us consider several tensors TH, ..., T, and denote their re-
spective symmetry groups by G;, ..., G,. The group G which is formed by
the intersection of the groups G,, ..., G, is called the symmetry group
of the set of tensors T}, ..., T,. It is not difficult to see that the
tensor H(T,, ..., T,) will admit the symmetry group G. This follows
from the fact that the components of the tensor H are functions of the
components of the tensors T; which are invariant with respect to the
group G. Therefore, the components of the tensor H will also be in-
variant with respect. to the group G. In this connection, it is obvious
that the symmetry group of a tensor which is obtained as a result of

* If the group G is not orthogonal it does not follow from (2.1) that
the components of the tensor A with another structure of the indices
are invariant.
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the operations of multiplication and contraction of several tensors will
either coincide with the intersection of the symmetry groups of the com-
ponent tensors or will possess greater symmetry and contain this inter-
section as a subgroup.

If the tensor H admits the symmetry group G, then the number of
linearly independent terms p in the formula (1.3) is, in general, less
than 3". For a given group G and for a tensor of given order r, the
number p can be computed using the theory of group characters [13,14,30].
Tables suitable for the symmetry groups of oriented media and crystals
are given in [13,14,18].

If a tensor H of odd order admits only the trivial group G consist-
ing of the identity transformation, the number of terms is p = 3"; in
this case the tensor has the most general form. If the tensor H is of
even order its symmetry group consists of at least two elements: the
identity transformation and central inversion. For symmetry groups con-
sisting of only central inversion and the identity transformation we
have H = 0 for odd r and, therefore, p = 0. For even r we have p = 3™
and, in this case, the tensor of even order has the most general form.

The scalar coefficients ks in equation (1.3) are, in the general
case, functions of the common invariants of the tensors T, ..., T, and
of any number of given scalars (e.g. temperature, concentration, etc.).
Some of the common invariants may be constant parameters, others may be
variable. We shall denote the complete system of common invariants [9,
10] of the system of temsors T, ..., T by Q, ..., Q.

It follows from the completeness of the system of invariants that
every invariant J formed from the components of the system of tensors
T,, ..., T, satisfies the functional relation:

J:f(91’°--vQN)

By definition, the invariants Q; retain their values in their same
forms as functions of the components for any of the transformations of
coordinates. These invariants can be obtained with the aid of the opera-
tions of multiplication and contraction. In this case the invariants are
homogeneous polynomials [9,10] in the components of the tensors T,

ey, T

m

Let us assume that among the tensors T, ..., T, the tensors T,
..., T, (1<v < m) are constant parametric tensors. Let the set of
tensors T, ..., T, admit the finite symmetry group G*. Let us fix the
values of the components of the tensors T,, ..., T, given in the coordi-
nate system x'. After this is done the invariants Q; reduce to w;, which

are functions only of the components of the tensors T, .y T, ;- The
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equations @; = Q. are true only in the coordinate system x%; in other
coordinate systems these equations are not in general satisfied. How-
ever, the equations will be satisfied for all transformations of co-
ordinates determined by the group G*, since for these transformations
all the tensors T,, ..., T, are invariant. The quantities w; will not

in general be invariant under any arbitrary transformation of coordi-
nates. It is clear that some w;, those which depend only on the com-
ponents of the tensors T;, . 7; or only on the components of the
tensors 7}, .«-y T,_;» will not depend on the transformation of coordi-
nates. It is obvious that all the quantities @; as functions of the com-
ponents of the temnsors T), ..., T, , may be regarded as invariant with
respect to the group G*. Thus, the invariant coefficients k  in formula
(1.3) will be functions of the Q;. The quantities k  may be considered
as functions of only the invariants o; under transformations of coordi-
nates in the group G*.

The invariants o; are analogous to the invariants of an integrity
basis. The quantities w; coincide with an integrity basis for proper
choice of the complete system of invariants Q.. In the general case vari-
able, functionally independent invariants have special significance,.
Functionally independent invariants can be selected in various ways.

The actual construction of the tensors H_ in terms of specified de-
fining tensors T}, ..., T, is always possible and suitable general
methods will be exhibited in examples.

The linear independence of the tensors H, can be established directly
on the basis of geometric considerations or by verification with the
aid of the appropriate determinants or by other general methods. In
particular, the tensors H;l and H, are linearly independent if they are

orthogonal or the symmetry groups of H;} and H;z do not coincide, since

otherwise these two tensors would be proportional, which would contra-
dict their conditions of symmetry. However, tensors which have the same
symmetry group may be linearly independent.

Let the symmetry group G, correspond to the tensor H,. In a number of
cases it is convenient and advantageous [19] to choose the tensors H_
so that

G12G; 26,2 ... 26,

It is apparent that it is always possible to take as the first g
(g <<p) linearly independent tensors the tensors H,, ..., H , which de-
pend either only on the fundamental tensor g or on g and the third-order
tensor E.
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E = | gl (3,995 — 9,39, + 3959, — 359,93 -+ 949,95 — 959:9,) (2.3)

These tensors correspond to isotropy with respect to the full or the
proper orthogonal group. The isotropic temsors H,, ..., H of order r
are well known from the literature [3,9,10,30]. In three-ﬁimnsional
space the maximum number g for isotropic temsors of order r equals [30]

r=% 2 3 & § 6 7 8 9 10
g=0 1 1 3 6 15 36 91 232 603

All isotropic tensors of order r are isomers of the tensor H,, where

Kyoo By

Hl = gn%, |, g‘xr“r-—l {r = 2K}
H.:,...a,. — Eq‘a,a' gu.ll; . ga’._,lar' (r o 2k+ 1)

The number q is equal to the number of different, linearly independent
isomers of the tensor H,, taking account of the symmetry of the compo-
nents of the tensor g'’.

If the number r is odd, then g = 0 for the full orthogonal group; all
tensors of odd order which are invariant under the full orthogonal group
reduce to zero. Tensors of odd order which are invariant with respect
to the orthogonal group of proper rotations, with A = la®:| =1, can be
non-zero only for r 23, For r = 3, we have H, = E and, therefore, gq=1.

The presence of symmetry of tensor functions with respect to some
group of permutations of the indices will, generally speaking, decrease
the numbers p and q. Formulas for tensor functions having certain sym-
metries with respect to some indices are always easily obtained from
the general formulas by using the operations of symmetrization and
alternation on the proper indices, retaining in the process only the
linearly independent terms.

3. Tensors which specify the geometric symmetry of
oriented media and crystals [29]. A medium is called isotropic if
all its properties at each point are invariant under the group of
orthogonal transformations. We can distinguish between the following
two types of isotropic media:

1) isotropic media with respect to the full orthogonal group of co-
ordinate transformations with A = + 1,

2) isotropic media with respect to the group of rotations with
A =+ 1 (gyrotropic media).
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It is easy to see that in the first case the symmetry properties are
completely characterized by the fundamental tensor g. The condition of
invariance of the components of the tensor g can be considered as the
condition which defines the infinite class of all real matrices which
are elements of the full orthogonal group.

The group of rotations with A = + 1, which defines gyrotropic media,
is a subgroup of the full orthogonal group. This subgroup can be singled
out by supplementing the condition (2.2) with the additional requirement
of invariance of the components of the tensor E defined by formula (2.3).
Therefore, the infinite set of elements of the group of rotations is de-
termined completely by the condition of invariance of the tensors g and
E. These two tensors may be considered as the tensors which determine
the group of rotations with A = + 1.

Later we shall use the abbreviated symbols proposed by Shubnikov [15,
16) as notation for symmetry groups. According to these rules, the full
orthogonal group is denoted by the symbol /w0 x m (the generating ele-
ments of the group are: intersecting axes of infinite order and a re-

flecting plane of symmetry m). The group of rotations corresponds to
the symbol oo/co,

Results are given in Section 2 on the general form of tensor func-
tions for tensors of any order when isotropy is present, i.e. when the
arguments are only g or g and E.

The simplest example of an anisotropic medium is the oriented medium.
We shall call a medium an oriented [textured] medium if all its proper-
ties at each point are invariant under an infinite orthogonal group con-
taining rotations of arbitrary angle about some axis. Obviously, the
symmetry groups of oriented media are subgroups of the full orthogonal
group.

A simple analysis shows that only seven different types of oriented
media are possible, including the two types of isotropic media. The
appropriate geometric illustrations for the different types of oriented
media and the corresponding tensors and vectors which specify the sym-
metry groups of the oriented media are given in the table below. The
correctness of these results is easily verified directly.

An anisotropic medium with a continuous or discrete structure is
called a crystal if it is possible to introduce a system of triply
periodic Bravais lattices (with the same periods in the various lattices
in a fixed coordinate system) having the same geometric properties as
the medium under consideration. The set of Bravais lattices with given
periods can admit finite point symmetry groups. The form of these groups
depends on the structure of the set of lattices being examined and on
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the elementary parallelepiped of periods.

As is well known [2,16), there are only 32 different symmetry classes
of crystals described by finite point groups. In the table (pp.608,609)
the characteristic data are presented for all 32 crystal classes; the
corresponding geometric figures illustrate each symmetry group.

The unit vectors e,, e,, e, form the orthogonal crystallographic
basis. The orientation of this basis relative to the figure of symmetry
of the crystal is indicated in the sketch. At the upper left of each
box the notation of the corresponding group according to Shubnikov is
given. Moreover, each box contains symbols we have used for a set of
simple tensors which characterize and specify the given group. The de-
finitions of these tensors are given by formulas which also appear in
the same table.*

Let us consider the tensors which determine the symmetries of the
groups of the cubic system. We shall prove that the tensor 0, is in-
variant under a group of 48 transformations which give an isomorphic
representation of the group 67/4, and that there are no other trans-
formations under which the tensor 0, is invariant. To carry out the
proof let us find all real transformations under which the tensor O, is
invariant.

The condition of invariance of the contravariant components of the
tensor 0, are equivalent to the following system of nonlinear algebraic
equations for the nine elements of the matrix of transformation ? lj
(3.1)

| a
a*ya8 0,8 + a%,aPya%,a%, + 0%5aPa¥yady = {(1)
The right-hand side is to be set equal to unity if a = =y = § and

to zero in the remaining cases. Now setting « =P and y = 8§ for a # v,
we obtain the equations:

(a%,)? (a¥})? + (a%,)? (a¥y)? + (a%,)? (a¥y)® = O @7 (3.2)
It follows from (3.2) that
a*a% =0 (3.3)
Since the determinant |a%;| # 0, we conclude from (3.3) that there

is only one non-zero element in each column and in each row of the
matrix ]|a“i ll.

* In this table and in what follows, powers of vectors are to be under-

stood as dyadic or polyadic products.
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Since (a%)* + (a%))* + (a%,)* =1 for a =B =y = &, in accordance
with (3.1), the following equality holds for each real non-zero element
of the matrix || a%,

ary = 41 (3.4)

Enumeration of all possible cases of (3.3) and (3.4) shows that the
matrices consisting of the elements (apq)z, which are either equal to 1
or 0, can have the following forms:

100 1 00 010 010 0 0 1} o 0 1
01 0f, (o o 1y, 1 o of, {o o 1, Jo 1 of, {1 o o] (3.5)
00 1 010 0 0 1 100 1t 00| Jo1o

A system consisting of only six matrices has been obtained. If, in
accordance with (3.4), account is taken of the possibilities of differ-
ent signs for the aP , then each of the matrices (3.5) generates eight
matrices for llap ||. For example, the matrices corresponding to the
first matrix of (%.5) are:

+1 0 0 +1 0 0 +1 0 0 +1 0 0

0 +1 of, 0 +1 of, 0 —1 of, 0—1 0

0 0 +1 0 0 —1 0 0 41 0 0 —1
(3.6)

— 0 0 —1 0 0 - 0 0 -1 0 0

0 +1 of, 0 +1 of, o —1 of, 0—1 0

0 0 41 0 0 —1 0 0 41 0 0 —t

As is known, by the definition of the symmetry group of the cube 6/4,
the system of matrices of the type (3.6) for each matrix of the system
(3.5) forms the complete group of transformation matrices for symmetry
of the cube of the group 6/4, and consists of 6 x 8 = 48 orthogonal
matrices. Thus, every matrix corresponding to a solution of the system
of equations (3.1) must be one of the 48 matrices of the system (3.6).
On the other hand, it is easy to assure oneself that the converse pro-
position is also true: each matrix of the system of 48 matrices which
has been found provides a solution of the system of equations (3.1).

Let us now find the matrices of the group of transformations under
which the tensor T, is invariant. The conditions of invariance of the
contravariant components of the tensor T, are equivalent to the follow-
ing system of nonlinear algebraic equations for the nine elements of

the transformation matrix, a‘j

3.7)

1
a®,aP,a%; -+ a%yafavs + a%*;ab,aY, + a*,aPgaY, + a*yaPsaY, + a%abia¥, = {0



Nonlinear tensor functions 611

The right side of (3.7) should be set equal to unity if «, B, y are
all different and to zero if at least one pair of «, B, y are the same.

Let us take the equations of (3.7) for which y = B. These equations
have the form

; a=1,2,3
a%,0Py0P5 + a%y0Pi0Py + a%5aPiafy = 0 (B =1,2,3 ) 3.8)

Since Iaijl # 0, it follows from the system of equations (3.8) that
abiaf; = 0 3.9)

where P is any fixed index. From (3.9) and the condition that lat | #0
it may be concluded that there is only one non-zero element in each row
and each column of the matrix || at; ||. There are only six such matrices
having different structures of the indices on the non-zero elements:

a0 0 a0 0 0 a0 0 a0 OOas 0 0 ag
0 5,0, 00 b, [500f, 00 b, 080 [0 0](3.10)
00 a 0 0 00 e 0 0 e 00 0 e O
Equations (3.7) with different indices o, B, y give:

abic; = 1 (i=1,...,6) (3.11)

It may easily be seen that for orthogonal transformations, when the
conditions

3
i 5o 1 fOri:]'
Ea,,a?a—{o e (3.12)

=1

are satisfied, the following equalities hold:

a; = + 1, bi = ji’: 1, i = + 4 (3.13)

In the general case, in order to obtain a representation of the sym-
metry group 3/, the requirement of the invariance of the tensor T,
must be supplemented by the condition of invariance of the tensor g,
since only in this case will the conditions (3,12) which form part of
the definition of crystal symmetry groups be satisfied.*

* 1t is easy to verify that for lei‘ = 1, the equation 2g = Td : TB
holds, where the contraction is carried out with respect to two
similarly located indices. However, it does not follow from this
equation that g is invariant under the transformation (3.10) (with
(3.11)).
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The system of matrices (3.10) together with the conditions (3.13) de-
termines the 48 matrices of the symmetry group 6/4. However, the addi-
tional equalities (3.11) select a subgroup of 24 matrices for which
either a; = b, = ¢; =1 or two elements of the three numbers a;, b,, c;
are equal to -1. For instance, we obtain only four matrices from the

first one of (3.10)

“+1 0 O 41 0o 0 —1 0 0 —1 0 0
041 o“, 0—1 oH, I 0—1 on. “ 0+1 0f (3.14)
0 041 0 0=t 0 041 0 0 —1

It is easy to verify that the system of 24 matrices which has been
found and which represents the group 3/4 is the solution of the equa-
tions (3.7) provided that the matrices sought are orthogonal.

Let us now consider the conditions of invariance of the tensor Tj.
The following system of equations for a'., the elements of the trans-
formation matrix, is equivalent to the condition of invariance of the
contravariant components of the tensor Tj:

1
aaaaﬁzaﬂaass + aasaﬁsa\'lasl + aalaﬂla'lgaag ={

. (3.15)

where the right side should be set equal to 1 for a =p =2, y =8 = 3;
a=p=3, y=8=1; a=p =1, y=5=2 and to zero in all other
cases. From (3.15) we have

fora=p=1,y=58=1, 3

(3.16)

atyaly = 0, alye®; =0, alyet; =0, a‘ya®, = 0, alay =0, a4ya® =0
= = = =1, 2

fora=p=2,y=2% ) (3.47)

ataly = 0, a3 =0, a%al; =0, a%a? =0, ala'; =0, d*d’ = 0
f =p=3,y=8=2,3

ora=p Y (3.18)

a%at, = 0, ad,a% =0, a’0? =0, a%a® =0, d*a® =0, atad, =0
It follows from the 18 equations (3.16) to (3.18) and from the con-

dition that |a® I # 0 that only one element in each row and each column
of the matrix “a‘j“ can be different from zero. If

. — —_— a2 — 3. —
a'; =0, then aly =a'g=a% = a*; = a*;, =a% =0

Thus we obtain the matrices
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for a0 for al3+0 for al30

ay; O 0 0 a4y O 0 0 als
0 a4 0 0 0 a% as 0 0 (3.19)
0 0 a3% a3 0 O 0 a3 O

The three equations (3.15), when the right side is equal to unity
and al1 # 0 result in

(%) (a%)® = 1, (@%)" (a*)* = 1, (@) (*)" =1 (3.20)

The real solutions of these equations and the equations which are
obtained analogously for al2 # 0 and al3 # 0 are given by the equalities

a, =+ 1, a?, = + 1, aty =+ 1
aty = + 1, a*y = + 1, ad =41 (3.21)
aty =+ 1, at, = 4+ 1, a®, = + 1

It follows from the values of a'. which have been found that each of
the matrices (3.19) splits up into eight matrices. We obtain a subgroup
of the group of matrices 6/4, the subgroup consisting, all told,

3 x 8 = 24 orthogonal matrices. It is clear that the solution obtained
satisfies the entire system of equations (3.15) and that every real
solution is contained in the one just found.

The addition of the temsor E as a defining quantity results in the
exclusion of matrices with A = -1, since E is invariant only with re-
spect to the group of proper rotations, for A = +1.

The set of two tensors O, and E singles out a subgroup consisting of
the 24 matrices with A = +1 from the group of 48 matrices found for O,.
The set of tensors g, T, E also specifies a subgroup consisting of 12
matrices with A = +1 from the 24 matrices which were found for the
group of g, T,. Dy actually singling out the proper matrices one can
show that the transformation groups corresponding to the system of 12
matrices for the tensors g, T,, E and that for the tensors Ty, E co-
incide.

The equivalence of the tensors and the corresponding symmetry groups
for the tetragonal system which are indicated in the table is a con-
sequence of the following considerations. The symmetry group of the
tetragonal system can be obtained as the intersection of the correspond-
ing symmetry groups of crystals of the cubic system and symmetry groups
of oriented media. Therefore, the specification of the proper subgroups
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from the groups of the cubic system and of the oriented media may be
accomplished by forming sets of tensors from the tensors which specify
the corresponding cubic Symmetry groups and those which specify groups
for the oriented media. It is easy to see directly that the conditions
of invariance indicated by the sets of tensors for each of the seven
classes of the tetragonal system determines the group of transformation
matrices of the corresponding symmetry group of these crystal classes.

In order to justify the choice of the tensors which specify the sym-
metries of the hexagonal and trigonal systems, we must consider the
conditions of 1nvar1ance of the components of the following pairs of
tensors D, and e3 ; D, and t!'3 » Dy, and e3 . The conditions of invari-
ance of the dyad e3 selects only the matrices of the following form

ay als alg
a%, a% a¥

0 0 +1

(3.22)

as admissible coordinate transformation ma‘trices. It follows from the
invariance of D, or D, or D,, that al 3 = a?, = 0. If we require the
invariance of the vector e, mstead of e3 , we are led to transforma-
tion matrices of the form

aly al 0
“ a% ao% 0 “ (3.23)
0 0 41

Since D¢,, Dy, and D, are expressed in terms of the basis vectors
e, and e, only, the invariance of these tensors is related to the struc-
ture of the second-order matrices:

a11 alg
p=| & ]

In order to determine the structures of the matrices D, it is con-
venient to introduce a complex basis by means of the formulas

(3.24)

i1 =e + iey, jo = €, — le,
In this basis the tensors D,;, D), and D,, take the form:
2Dy, = i + i 4Dy = (i + i) 2Dy = &5 (i + §°)

The conditions of invariance of these tensors in the real basis can
be rewritten as conditions of invariance in the complex basis. If the
transformation formulas of the complex basis have the form

] __bau
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then the relation between the matrices H aijll and “ bijll is deter-
mined by the equations

1 1
oy ol T OTgen Ba)qt
uau a’a“=“_i 1“%'& b%“"“i ._iﬂ (3.25)
2 2

The condition of invariance of the tensor D,; leads to the following
system of equations for the b‘j

bR+ B0 =) 1o Pemes

0 in the remaining cases.

In expanded form this system is equivalent to the equations:
G + @ =1, BN+ B 08 =0
B + @*)* =1, B (BN 4+ 8% ()" =0

All solutions of (3.26) satisfying the condition |b%.| # 0 are easily

found from these equations. Since the a‘j are real, it follows from
(3.25) that b, = B?, and b!, = B?.

(3.26)

Taking this into account, we obtain six matrices for ” b‘jll:

(3.27)
10 et 0 0 1l 0 e ( o
“01“' ‘ 0 e"’ 10!’ r e 0 e=exp3

The orthogonality of the corresponding matrices (3.22) is obtained
automatically.

e O
0 ¢

0 ¢
e? 0

?

By use of formulas (3.27), (3.25) and (3.22) it is easy to write out
the 12 matrices corresponding to invariance of the temsors Dy, e32
which characterize the class m x 3 : m of the hexagonal system. The in-
variance of D,,, e, determines six matrices obtained from (3.23), (3.25)
and (3.27) corresponding to the class 3 x m of the trigonal system.

The conditions of invariance of D,, and e32 modify equations (3.26)
somewhat. The solution of the corresponding equations leads to a system
of twelve matrices. The first six of these, which correspond to the in-
variance of e,, coincide with the matrices of the class 3 x m(D3h, ea),
and the other six are obtained from the first ones by changing the signs
of all the components of the matrices. The conditions of invariance of
D¢, and e32 lead to matrices of the type (3.22). In the corresponding
equations of type (3.26), *1 must be written instead of +1. As a con-
sequence of this, the corresponding solution contains the twelve
matrices of the class m x 3 : m and, in addition, the following twelve
matrices:
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(4 0 0 T 0 0 T8 0 0
0 13 o, " 0 18 ofi, 0 T 0
0 0 41 0 0 41 0 0 41 i
0 13 0 0 T 0 0 T8 0 (f =exp 3)
24 0 otf, 15 0 of, T 0 0
0 0 +1 0 0 41 0 0 +1

The corresponding real matrices are easily written out with the aid

of formula (3.25).

The tensor parameters for all the remaining classes of the hexagonal
and trigonal systems are easily obtained by considering the inter-
sections of suitable groups whose tensor characteristics have already
been established. The reason for this is that the symmetry groups of
these classes are subgroups of the symmetry groups which have been in-
vestigated above.

As for the rhombic, monoclinic, and triclinic systems, the tensorial
characteristics indicated in the table are immediately apparent. It is
clear that the corresponding sets of tensors which specify the symmetry
groups are not uniquely determined.

In each case, another system of tensors having a one-to-one relation
with the system given in the table may replace the latter. In particular,
the number and powers of the tensors in a system need not remain the
same, For example, instead of the tensors indicated in the table, the
following correspondence of tensors and groups may be used:*

m-2:m e? e’ eg 2 e e? e E
2:2 el e?, e?, E, m e, e, e
2-m e,%, e2, e, 2 ee,, €€5, €8
2:m e’, ¢, e, Q,

Each tensor of this system can easily be expressed in terms of the
tensors given in the table. The inverse relations are immediately
obvious.

The problem of determination of tensors which specify the symmetry
groups of crystals and oriented media has been considered above. The in-
verse problem of determination of the orthogonal symmetry groups corre-
sponding to a given tensor has been solved in important special cases.

* Products and powers of vectors are to be understood as dyadic products.
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4. Tensor functions of tensors characterizing the geo-
metric properties of oriented media and crystals. General
formulas of the type (1.3) are given below which are valid in arbitrary
coordinates for the comgonents of vectors A', second-order tensors AV,
third-order tensors A'/%, and fourth-order tensors AUkl for oriented
media* and crystals. These tensors are functions of the tensor arguments
in the table which determine the various symmetry groups.

Since the simultaneous invariants of the tensors which determine the
symmetry groups are absolute constants, the invariant coefficients k_
(s =1, ..., p) are numerical constants or functions of certain scalars
which may also be present in the list of defining quantities in addition
to the specifying tensors.

Only p linearly independent terms are written out in the formulas.
The choice of the terms may be changed; but in every other case a proper
choice of terms can be represented as linear combinations of the terms
written out in the formulas.

The problem of selection of linearly independent tensors may prove to
be important when using various supplementary hypotheses about the
character of the functional relations (linear dependence on certain com-
ponents, etc.).

The known results** when the following symmetry conditions are used:
i i ijk ikj ikl ijlk ijkl 4 dikl ijkl klij
AT = A", AT =A™, ATV =4V, AV =47, AV = 4

are easy to obtain from the formulas given. The above conditions are
fulfilled when additional limitations are imposed on the invariant co-
efficients. Proper formulas are obtained from the ones presented by
means of the operation of symmetrization.

Oriented media

Class oofoo-m (g)
A = 0, AV = kgij’ L 0, 41 __ klgijgkl + k2gikgjl + ksxi!gjk
Class oo/ oo (g, E)
A = 0. 4 = kgij, A% kEijk’ LI (o0 / 00-m)

* Analogous formulas containing errors were published in [28]. The
corrected formulas are given here,

** (See preceding footnote)



618 V.V. Lokhin and L.I. Sedov

Class m- 9o im (g, B=es?) i
A =0, A=k + BBY, AT =0, AT = 4™ (co/co-m)+ kg B" +
+ keg chJl + Kog IBJI: + k glei) + & gﬂBtk + k gkatl + k,Bi’B'"
Class o0 :2 (g, B= ey, E)
At =0, A = kgt 4 kpBY
Ai;‘k -k Eijk i Eajk Eija P ijkl ukl
= kE™ + kB E* 4 LEFB, 4 (m-co : m)

Class oo :m (g, B= e, @ = e;e; — ese;)
Al=0, A= g + B+ Y, 4 =0

Uk o gtk (m 0t m) + kngQ" + k, g"‘sa” + kg @ + kig™QY +

+ kg Q" + hieg Q" + kB + meB¥ Q7 4 k,.g*’s
Class oo-m (g, b = e3)

A =1, A7 = kgt 4 'Y,

Aijk ijbk + }tzgikbj—f- ksgjkbi + k‘b’!bjbk
(oo / 00-m) + fug”b 8 + g N N N L

+ kog" B0 + kog™ bib’ + kbbb b
Class oo (g, b= e, E)

A= w', AY = kg + kab'd + KB,
Aijk - kgijbk +’k!gikb;i+ ksgjkbi-f* k‘bibjbk_'_ ksgﬁbk + ch"‘bj-!" hn]‘l 13
KA L (corm) o bug 90M + kg™ Q" + kg Q" + hueg"' 0" + kg0 +
+ kg 0 + kb'b QF + kygb'¥ QT 4 kU (0" = Bty )

A

Aijkl 1 ikl

A

The cubic system

Class 6/4 (Op
Alm0, A= kgt AT oo, A
Class 3/4 (0, E)
A =0, AV = kgt ARt g R

13}:1 ijki

(00 [ 00-m) + kiOp

Class 3/4 (g9, T,
A=0 AV=1k", AT =1,
Class 3/2 (q, E, Ty -t?r (.Q.Y'h, E) ) ‘ .
At = 0, AY kg” A‘l]k = ky Ei]k + szdiJk
A:}kl t}hl (S;‘4) + ksT ikl + ksThiijk + k”Thikﬂ

ijk' Aijkl 'I)ll (8{4}
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Class 6/2 (T})
Ai =0, A9 — Icg”, Amk =0 Aqkl ukl 3/2

The tetragonal system

Class m:4:m (O, B == es’)

4' =0, A = 4" (meco 1 m) = keg' + keBY

A‘ijk — 0, Aijkl ‘lel (m 00 * m) + knohijkl
Class 4-m (g, T, B=e?)

At =0, AY = kg + kB
A =k kB kBT A= A ki)
Class 4:2 {(0,, B = e, E)
ik — Aijk (oo . 2), Aijkl thl (m- 4: m)

A =0, A= g+ kB 4
Class 4:m (0,, Q@ = ees — eg¢;, B = es?)

Ai=0, A=AV (0:m), A*=0

Aijkl t]kl (oo m) + kaooh” ki + kﬂo Jklag

Class 4 (9, Ty Q@ = eje; — ezey,

At=0, A= 4Y(c0:m, A*"" =

i. * i Bk
+kQ TR k@ TR

= e3 )
A* @m) + kY 4+

A = A g )

Class 4-m (0,, b= ej)

A =w', A7 = kg £ 'y, A AW g gy

ijk — th (oo m)

Class 4 (O,, b = e; E)
At = ' AY = kg kab'D + ks QY (94 = EYi*p )
A = 4 (), A < 4(o0) + 100, + ka0, 0

The hexagonal system

Class m:6:m (Dy,, B= &7
A'=0, A= kg + BBY
Class m-3:m (Dy, B = €?)
A =0, AY = k" + wBY, 4

AT L 4l ikl (m-co : m)

ik _ ijk ijkl ijkl )
= kDg, ", A" o 4™ (oo i m)

Class 6:2 (Dg,, B = e, E)

A = klgi’ + kﬁij, A AVKE o gl (m-oo : m)

at=o, UK =AY (o 1 2),
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Class 6:m (D, B = e, 2 = eje; — exey)
A =0, A=A (0:m), AF=0 A= 4™ (c:m
Class 3:m (D, B = ey, Q = e;e3 — eze)
i 4 §, . $ik ik ijagy ¥ - ikl ik,
A =0, 4" =40 m), A" =KDy + WDy QY A = 4 (o m)
Class 6:m (Dg,, b — ey
A =m', A7 = k' + W'Y, 4
Class 6 (Dg,, b = es, E)
4 3

ik — At;k (w.m)’ Aukl — Aukl (oom}

— ) AT = AT (), A = A ey, AT = g (o
The trigonal system

Class 6-m (Dgy, B = es?)
a'=0, A= kg + mB", A* =0

ijkl kijl + k
14D3d

s i'
+ kaDy ™ + kiaDyy i

AT = 4 (00 s m) + kD,
Class 3:2 (Dy, B = e?, E)
A =0, A9 = kg + B, A = 4 (0q 1 ) 4k DI
A = 4 e m) knDShijaE“: l + Iy gEaijDSh"‘f; +
b raE 0,1 4 D
Class & (Dgyy B = e, @ = eyer — &)
4t =0, A9 = 49 (00 1 m), A% — o

kiil ik

Aij}t! - Aijk! (o0 = m) + kzngdijM + klesdjikl + k22D3d + kstsd
. . . - Kiiee ! - RT
+ h“DsdiJkGQ - + k”DiidﬁkaQ . + k”DSd Hagy . + szDsd ijacy .

+

Class 3-m (Dy,, b = &)

A =w A = kg 'y, AT = 4% (com) + Dy,
Aljkl — Ai)kl (o0 m) + knD3hijkbl o+ klzDshijlbk + k13D3hiklbj + k"D:;hkljbf
Class3 (D, b= es, E)

A= w, A7 = 4Y (e0)

j ji ij i k- ikl ijkl
Ai}k — Ag}k (00) + k&l)s;"k + knDsht]aQ o A L, Al.}

(6)
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The rhombic system

Class m-2:m (Dy)
At=0, 4= klgij + kzDzhi’ + "”DzniuDzh o
Ai§k= 0, Aijk! t; kl + kz ik 3t+ kg g + hg + kg hu+

3 i ik j il ]
+ kag“Dgh’k + k‘lpgh g 4 ks Dzh‘ g + K Dz; 37 + ky g"Mk

o X ;
+ kug* M + kg M+ Ky M" 4 M g 4 kM g + k1eDy, ’D "'+
+ kuM

+ kaDy, " M* 4 kDM knDeh M" + ksoMD
( M J za D )

(Cayl ey-Hamilton formula)

Class 2:2 (Dy, E)
A= 0, Aij—- i {m- Z’m)

W™ + WETD, 4 kE%D 7 4 kM~ -+

ukI i]kl( .2 m)

Aijk =
: ’ . { . .; k
+ ksEmaM L - 3 + ksDzh ‘aEa- BMﬁ * A
Class 2.m (Dy,, b=ey
=1, A=A m2:m) = kg + k'Y + kD,
A — kg g+ kgt kbW 4 Dy, Y 4 kD, 4 kDM
AR, 4R (m-2: m)

The monoclinic system

Class 2:m (D, @ = e;e5 — eze))

=0, A"=a(m2:m+ K+ mnaep,’, A*=0

.‘k 3 x X A 3 Tox k3

At) ] = Aiﬂtl (m~2 . m) + kngiggkl + -kzag‘kﬂﬂ + ksgﬁ sz + k”gk! Qi’ + Img Q +
i ) ok -k . §

+ kg™ Q" + ko g’Qk“D "4 aog' Q’“Dm -+ kg @Dy, "+ kng"@D 7 +

+k”g}zgi¢D + kssgijZED - + ksi‘Dghiijl'*' k D ikgi£+k“D2htfgij+

4 knngh"g'mpa 4+ k,ap ioinp - ¥4 k,sn eln 74
+ koM™ QY 4 kb sa"“ p, !

Class 2 (D, E, b = e)

Al = w, A= A% 2 m)

i k i. - . - . - . " . . »

¥ = kg 'o" 4 kag™ b + kog™ bt + kb6 + kD, B+ keDy, B o DanMbt 4

+ ke QYb" + ke Q"E + £p@* B 4 £, QD T F 4 k0D T F R 4 ke0*D TR
gha - sha - oha

Aijkl - Aijkl 2:m



622 V.V. Lokhin and L.I. Sedou

Class m (Dy, b=1¢,, ¢ = e)
; . 3 L . . .
A' = k' + k', AT = kg o kB o+ kac'e - kbt 4 kso'd
- " o . .
A" = kg b kg™ b 4 kg™ b KbV o+ ket 4 keg™ el + kg o+
i SO o )
+ kee'8'B" 4 ko' Hyob's F kb e+ kaae'biF 4 Eysc B - kol

ijkl i)hl

A @2:im) = klg g+ kg™ g+ kag g + kag 08 4 keg™ 0!

+ ke g b’b + kg + kB gt 4 Rb'B ‘g"‘ + kmg"b ¢+ kn g"‘b"c‘-;-

+ kgt +k3g Wl kugbie +ic15g Kot + kueg cFB' 4 kgt b 4+
+ kgt b+ Kiog" cb’+kog vk +k2,g e'b' + koac' bT6"b" + hagb'e b"b’+
+ kub'd'*p! +kgsbb’b &+ kg " + kg S+ kgl kagct el 4
i+ kaob DB’ 4 kgt + kaeb'bict e + ksab'd ' + ksab'b' ol + kasc b0 +
+ kaac'FBIB + karc I BIBE + kagb Tt e 4 kaoc b K e kaod TBEE - ket el KN

If e, e, and e32 are taken as the defining tensors instead of Dzh*
e;, e, the last formula for fourth-order tensors may be replaced by
the formula

Ay = I:ij"‘e~e-e e, + kP33 «€a€3 €5 + k“’mﬂeaeseseﬁ + k33“3eseseaea +
+ 5% e e,8,ep + k¢ seseaeﬁea + l‘:““”‘;"’eme3e,3e3 + k3333es000004 *)

where the summation is carried out with respect to the indices i, j, &,
I, « P, which take on only the values 1 and 2. A simple calculation
shows that there are 41 terms in this formula; their linear independence
is immediately apparent.

It is not difficult to see that for tensors of even order, in particu-
lar, for fourth-order tensors referring to the classes 2 : m, 2 and n
of the monoclinic system, the corresponding tensor parameters may be re-
placed by the same system of tensors, e,;, e,, e32. The same formulas
may, therefore, be used, Thus, for all classes of the monoclinic system
the formula (*) is applicable to fourth-order tensors.

It is also easy to see that the fourth-order tensors for the rhombic
system with 21 linearly indepeéndent terms can be obtained from the
formula (*) in which the terms with i = j, k= 1; i =k, j =1 =1,
j = k and o = P should be taken.

Thus, it is clear that in the construction of general formulas for
tensor functions it is sometimes advantageous to change the original
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basis of arguments suitably for the particular cases at hand.

The triclinic system
Class 2 cy

‘4i =0, .4ij is the most general case with nine components

ijkl

/4ﬁk =0, A is the most general case with 81 components

Class 1 (e, e, €3)
All tensors have the most general form if symmetries are absent

5. Tensor functions for oriented media and crystals with
additional tensor arguments. We shall now assume that, besides the
tensors which specify the geometric properties of oriented media or
crystals, there are other tensors among the defining quantities or in-
dependent arguments. It is apparent that in this case the symmetry
groups of the set of defining parametric tensors are suitable groups or
subgroups of oriented media or crystals. Subgroups which differ from
the crystallographic groups can arise only when considering oriented
media. If other tensors are adjoined to those which determine a crystal
symmetry, either some crystal symmetry group will be obtained again or
the symmetry group will reduce to the identity transformation.

All subgroups of a given crystal symmetry group are contained among
the 32 crystal groups. Therefore, upon addition of other tensors to
those which specify the symmetry of the crystal, the symmetry group of
the new set of arguments will also belong to one of the 32 crystal
gI‘OUpS .

A decrease in the number of linearly independent components of the
tensors defined in the general case can occur only in the presence of
some corresponding symmetry. It is apparent that simplifications will
take place in the case of crystals when the set of defining parameters
admits a nontrivial symmetry group.

After the determination of the type of crystal symmetry group which
is appropriate for a set of tensor arguments, one of the formulas of
Section 4 can be used to determine the structure of the components of
the tensor function which has been defined. Thus, it is possible to use
the formulas of Section 4 to determine the structure of tensor functions
for crystals in the general case. To ascertain the nature of the
appropriate formulas it is first necessary to investigate the symmetry
properties of the set of given arguments. For crystals this is equivalent
to representing the defining tensors in terms of the set of tensors
which characterize the crystal classes, as indicated in the table.
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The argument given above permits us to analyze a large number of
special cases easily, when the supplementary tensors are special or
have a special form in the crystallographic axes. When additional
tensors are present the scalars ks are, in the general case, functions
of the common invariants of the supplementary tensors and the tensors
which specify the symmetry of the oriented media or crystals.

Supplementary tensors can give rise to variable simultaneous in-
variants. Generally the number of functionally independent invariants
is equal to the number of functionally independent components of the
variable tensors. In certain special cases the number of functionally
independeut components can be smaller.

It is possible to select the scalar invariants o; (in terms of which
the k_ are defined) so that they retain their values for the different
variable tensors which are equivalent from the point of view of symmetry
of oriented media or crystals. These arguments, which are determined in
a fixed coordinate system, may differ from the invariants Q; for arbi-
trary coordinate transformations but coincide with them (@; = Q;) in

the given fixed coordinate system.

6. On the Riemamnian curvature temsor and a gemeralization of Schur’'s
theorem. The theory which has been developed above is directly related
to all mathematical and physical laws which are formulated as vector or
tensor equations and which, to some extent, are connected with geometric
symmetry properties.

There are a great many important applications; we indicate as ex-
amples Hooke’s law for oriented media and crystals, piezoelectric and
optical effects, etc.

As one example we shall consider the Christoffel-Riemann curvature
tensor R, .- As is known [28] this tensor is antisymmetric with respect
to interchange of the indices i and j or the indices k and I, and is
symmetric with respect to interchange of the pairs of indices ij and kl.
In the case of three-dimensional space there are only six independent
components of Ri'kl' which may take on arbitrary independent values.
These six components determine the six components of the symmetric
second-order tensor K™, which may be introduced by the formula

k™ = E""E"" R, ©6.1)
From this, we have

1
Riypa=7 EijmExnK (6.2)

As is well known [31], the components of the curvature tensor satisfy
the Bianchi identity
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VrRijﬂm + VmRijnr + VnRijrm =0

where the indices m, n, r are all different and V; is the notation for
covariant differentiation with respect to the coordinate £}, It may
easily be seen that Bianchi’s identity is equivalent to the following
identity in the components of the tensor K™

v K™ =0 (6.3)

If the curvature tensor admits a symmetry of some type at points of
the Riemannian space, then on the basis of the theory developed above
it is easy to write out the general formulas which determine the com-
ponents of Rijkl and K™ in terms of the tensors which specify the cor-
responding symmetry group.

For instance, for symmetries of the type of the oriented media the
following formulas are valid:
for the symmetry o/© x m and ®/®

mn mn

K" = kg (6.4)
for the symmetry ©® x n, R x ® : m, ®: 2, ®: p, ©
K™ = kg™ + kd"b" (6.5)

where b™ are the components of the unit vector directed along the axis
of symmetry.

Analogous formulas can be written in any case when the components of
the tensor K™ admit any finite symmetry group. For instance, for sym-
metry corresponding to any one of the five classes of the cubic system
we have:

mn mn

K™ = kg (6.6

Therefore, in this case the tensor K™" is spherical, just as in the
case of complete isotropy. Corresponding formulas follow from (6.2) and
(6.4) to (6.6) for the components of the tensor Rijkl'

From (6.4) and Bianchi’s identity (6.3), we have
gmaval k=0 (6.7)

The equation (6.7) expresses a well-known theorem of Schur. According
to Schur’s theorem, isotropy of the curvature tensor at each point
implies the constancy of the curvature in the whole space. Indeed, we
obtain
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k = const
from (6.7).

A generalization of Schur’s theorem is contained in the proof given
above. This generalization consists of the fact that it is not necessary
to require complete isotropy of the curvature at each point of the space
for Schur’s theorem to hold. It is sufficient that at each point the
symmetry conditions of the group 3/2 be satisfied, i.e. that the com-
ponents of the tensors K™* and Rijkl be invariant under the 12 trans-
formations of the symmetry group 3/2.

If the.curvature is determined at each point by constant, collinear
vectors b, then Bianchi’s identity gives:

v E+ by =0 (6.8)

Equations (6.8) are a system of equations imposed on the curvature
for the corresponding Riemannian spaces.

The authors express their gratitude to Iu.I. Sirotin, whose conversa-
tions enabled them to clarify matters in crystal physics, a branch of
science which was new to them.
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