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Many fundamental geometrical and physical concepts are represented by 
scalar or tensor quantities. The mathematical formulation of a wide 
variety of laws of a geometrical or physical nature is accomplished with 
the aid of scalar or vector relations. The tensorial expression of equa- 
tions permits the formulation of laws which are independent of the 
choice of coordinate systems. Tensor characteristics and tensor equa- 
tions have additional invariant properties and special peculiarities 
when the geometric or physical phenomena, objects, laws, and properties 
admit some symmetry. 

Methods are developed below for automatically taking symmetry proper- 

ties into account both in linear and nonlinear problems by suitable de- 
fining parameters which are associated with the basic assumptions in the 
formulation of the problem under study. Appropriate conclusions are 
arrived at concerning the effects of symmetry by the use of methods 
which are analogous to those developed in the closely related theory of 
similarity and dimensional analysis [I]. 

The present work is devoted to the solution of two basic problems. 

a) It is shown that the properties of textured [oriented] media and 
crystals can be specified with the aid of tensors. Simple systems of 
tensors are actually determined as parametric geometrical quantities 
which define and specify the symmetry properties for all seven types of 
oriented media and all 32 classes of crystals. 

b) The general form is determined for the expression of tensors of 

arbitrary order when these tensors may be regarded as functions of a 
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System of arguments consisting of a number of scalars and several in- 

dependent tensors of various orders. 

Both problems are intimately related to the consideration of the 

system of coordinate transformations which generate some symmetry group. 

Symmetry problems play a fundamental role in physics. The specializa- 

tion of the forms of functions and of tensors of various orders which 

are invariant under suitable symmetry groups is investigated in many 

works. The appropriate conclusions are applied and have contributed to 

the discovery of new effects in a number of different applications. A 

summary of the basic data for different concrete examples is contained 

in a book by Nye [21. Detailed references to the earlier literature may 

be found in the same book. 

In algebra a general theory is developed for obtaining and describ- 

ing the properties of polynomial scalar invariants under finite trans- 

formation groups. These polynomials are formed from the components of 

tensors and vectors. It is shown [31 that for every finite orthogonal 

group G there always exists an integral rational basis (integrity basis) 

of invariant polynomials. This integrity basis is a finite number of 

scalar invariant polynomials formed from the components of given tensors 

and vectors in such a way that any invariant polynomial formed from the 

same components can be expressed in terms of them. An integrity basis 

forms a system of invariants with respect to the finite number of trans- 

formations of the group G. It is apparent, however, that its elements, 

polynomials in the components of given tensors, are not, in general, in- 

variant under any arbitrary coordinate transformation, although such in- 

variants are included in the basis. 

The number of elements of an integrity basis, which depends only on 

the group and on the choice of given tensors and vectors, is generally 

larger than the number of independent variable components of the given 

system of tensors and vectors. Therefore, the elements of an integrity 

basis are, in general, functionally dependent. 

The actual construction of an integrity basis for the groups associ- 

ated with oriented media and crystals has been carried out in works by 

Daring [41, Smith and Rivlin [51, Pipkin and Rivlin [Sl, and Sirotin 

L7.81. It is shown below that in order to construct tensor functions, 

it is necessary and sufficient to use a complete system of functionally 

independent simultaneous invariants [9,101 formed from the components 

of the tensors which specify the symmetry groups and the other tensor 

arguments. 

The construction of examples of scalars and tensors with specified 

symmetry is given in papers by Smith and Rivlin [5,6,11,121, in the 
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book by Bhagavantam and Venkatarayudu [131, and in the works of Jahn 

[ld, Shubnikov [15,16,171, and Sirotin [7,8.18.191. In a Paper by 

Koptsik [zol various tensors of a physical nature are considered. He de- 

fines the symmetry of a crystal as “the intersection group of the sym- 

metries of the existing properties of a crystal which are observed at a 

given instant, ” (p. 935). 

Tensors which are functions of tensor arguments are considered in 

the case of second-order tensors. In this case, functional relations 

between tensors lead to functional relations between square matriCeS. 

In this area the fundamental results reduce to the Cayley-Hamilton 

formula and to its generalizations to several matrix arguments [21-24. 

25-261 (second-order tensors). Basically, however, in these generaliza- 

tions only polynomial functions of matrices and components of tensors 

are considered. 

1. Fundamental concepts. As is well known, tensors may be re- 

garded as invariant objects which are independent of the choice of the 

coordinate system and which may be defined by the scalar components in 

a suitable basis. A tensor basis may be introduced in various ways; in 

particular, the polyadic product of the base vectors of a coordinate 

system in some manifold-space can always be taken as a basis. 

For simplicity in what follows we shall consider only tensors in 

three-dimensional space. Let x1, x2, x3 be coordinates of a point of 
the space and sl, a2, aa be the vectors of a covariant basis.* We shall 

denote a tensor of order r by H and its components in the coordinate 
basis or, 32r 33 by H"l*.*ar. In this paper we shall use the representa- 

tion of the tensor H in the form of the sum 

w = IT'"' Q).3a,. . . 3"r (1.1) 

where a summation is understood with respect to all the indices al, 

. . . . a,, which can take on the values 1, 2, 3. In the general case, the 

formula (1.1) contains 3' linearly independent terms, each of which may 

be considered as a special tensor. 

We note that different continuous manifolds and the corresponding 

different base vectors can be introduced for a single coordinate system. 

For the same coordinates xi and the same components Hal*s.ar it is 
possible to consider different tensors corresponding to the various 
bases. 

In particular, such manifolds may be considered as different states 

l The coordinate system is arbitrary. 
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of a given medium having an 
moves and deforms iith time 
given Lagrangean coordinate 
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imbedded Lagrangean coordinate system which 
[261. C ases are also possible where for a 
System the various manifolds which correspond 

have different metrics. Thus, it is possible to consider simultaneously 
different tensors with given components which are the same, but in 
different bases and in different spaces, some of which may be Eue1idean 
and others non-Euclidean (Kondo, Kriiner, Bilby, and others). 

The theory below will be developed for tensors in metric spaces. 

We shall denote the distance between two points with the coordinates 

X’ and xi + dx’ by ds. Let the quantity ds2 be defined by the formula 
ds2 = g+dx’dzP. ‘Ihe matrix 11 gij 11 f orms the covariant components of 
the fundamental metric tensor g. ‘lhe inverse matrix f] gij 11 gives the 
contravariant components. ‘Ike contravariant base vectors gi are deter- 
mined from the formulas ai = g%*. 

The following formulas are valid for the fundamental metric tensor g: 

9 = gap@3P = g@aa3p = 1Jia,$ <i$ is the Kronecker aelta) (1.2) 

Raising and lowering of the scripts of components of the various 
tensors is accomplished with the aid of the gij and g”‘. The formula 
(1.1) can be presented in the form: 

H=&,H, (4 *3) 

where the ks are scalars and the H, are certain tensors of order r. 

Later we shall always assume that the tensors H, are linearly inde- 

pendent. It is obvious that p< 3’. 

Let the components of the tensor H be functions of the components of 

the nt tensors 

T, = $.‘apX3a, . . .3,& (X=l,...,n&) (1.4) 

the functions remaining the same, independently of the choice of the 

coordinate system. The integers pl, *‘St PI determine the orders of the 

tensors T,. In the general case pl, . . . , pm are different and are not 

equal to r. By definition, we then call the tensor H a function of the 

tensors T1, . . . , T,. The tensors TKr among which there may he both vari- 

able and constant tensors, are the tensor arguments of the tensor func- 

tion H. 

If it is possible to form 3’ linearly independent tensors H, of 
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order r from the tensors T,, then in this case the tensor H will 

satisfy (1.3), in which the scalars k, will depend only upon the simul- 

taneous invariants of the system of tensors TK and possibly upon given 

additional scalar arguments. Below we shall consider only those tensor 

functions for which the tensor g is included among the tensor arguments 

TK. 

The tensors Hs can be constructed from the tensors T, with the aid 

of two tensor operations: multiplication and contraction. The operation 

of contraction with respect to any two indices is always possible by 

virtue of the presence of the tensor g among the tensor arguments. Any 

multiplication of several tensors leads to a tensor whose order is equal 

to the sum of the orders of the factors. Contraction with respect to 21 

indices lowers the order of a tensor by 21. 

Multiplic;;f~ and an obvious contraction of a given.tensor T having 

components T' * * a by the tensor S with components 6;‘E: results in the 

tensor T* of the same order with the components 

T+ikjl... E T jkil... 

The tensor Tc is called an isomer of the tensor T. The operation of 

interchange of indices can be reduced to multiplication by the funda- 

mental tensor and contraction. 13~ definition, a tensor obtained as a 

result of permutation of several indices is also called an i,a,omer of 

the tensor T. 

Methods are given below to construct general formulas of the type 

(1.3) for tensor functions. To this end, it is required to construct a 

linearly independent tensor basis H, (s = 1, . . . . p) in terms of the 

tensor arguments (1.4). Re construction of the basis $ from the de- 

fining tensors will be accomplished with the aid of the operations of 

multiplication and contraction. 

2. Symmetry grOUpS Of tensors. The contravariant components 
*al. ..a, of the tensor A admit the symnetry group G which is specified 

by the coordinate transformation matrices* 

l For simplicity the enumeration of the elements of the matrices of 

the group G is omitted, so that a’: is written instead of a 
where v = 1. . . . . 

(V) f;.* 
h and h is the i:mber of elements of the group G. 
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if for each matrix of the group G the following equation is satisfied: 

Ak..ir = A’h...“r ai,a, . . . ai,.o,, (2.1) 
If the fundamental tensor g admits a group, the group is called 

orthogonal. In other words, the transformation matrices of orthogonal 
groups satisfy the equivalent systems of equations 

gii = gG&$, a- p. 
gij * gapa.i a. j (2.2) 

It is easy to verify that if the group G is orthogonal, then the com- 

ponents of the tensor A having any structure of the indices are in- 

variant* under the coordinate transformations generating the group G 

provided that the condition (2.1) is met for the contravariant compo- 

nents of A. Therefore, for orthogonal transformations it is possible to 

speak simply of symnetry of a tensor or of invariance of all its com- 
ponents relative to the group G. 

The set of all orthogonal transformations under which a tensor A is 

invariant forms the symmetry group of the tensor A. ‘Ihe symmetry group 

of a tensor may consist of only the identity transformation. For an 

arbitrary second-order tensor (non-symnetrical, A’j # Aji) the symmetry 

group consists of two elements: the identity transformation and the 

transformation of central inversion. For an arbitrary symmetric second- 

order tensor the symmetry group coincides with the group of self-trans- 

formations of a general ellipsoid. If the tensor ellipsoid is an 

ellipsoid of revolution the symmetry group is infinite. A spherical 

(isotropic) tensor of second order has a symnetry group which coincides 
with the full orthogonal group of transformations, just like the funda- 

mental tensor g. 

Let us consider several tensors T,, . . . . T,,, and denote their re- 

spective sy-mnetry groups by G,, . . . . Gm. ‘Ihe group G which is formed by 

the intersection of the groups G,, . . . , Cm is called the symmetry group 

of the set of tensors T 
!’ *-‘I 

T,. It is not difficult to see that the 

tensor H(T,, . . . , T,) will admit the syrmnetry group G. This follows 

from the fact that the components of the tensor H are functions of the 

components of the tensors Ti which are invariant with respect to the 

group G. Therefore, the components of the tensor H will also be in- 

variant with respect. to the group G. In this connection, it is obvious 
that the symmetry group of a tensor which is obtained as a result of 

I If the group G is not orthogonal it does not follow from (2.1) that 

the components of the tensor A with another structure of the indices 

are invariant. 
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the operations of multiplication and contraction of several tensors will 
either coincide with the intersection of the symnetry groups of the mm- 

ponent tensors or will possess greater symnetry and contain this inter- 

section as a subgroup. 

If the tensor H admits the symnetry group G, then the number of 

linearly independent terms p in the formula (1.3) is, in general, less 
than 3’. For a given group G and for a tensor of given order r-, the 

number p can be computed using the theory of group characters [13,14,301.. 

Tables suitable for the synvnetry groups of oriented media and crystals 

are given in [13,14,181. 

If a tensor H of odd order admits only the trivial group G consist- 

ing of the identity transformation, the number of terms is p = 3’; in 
this case the tensor has the most general form. If the tensor H is of 

even order its symmetry group consists of at least two elements: the 

identity transformation and central inversion. For symmetry groups con- 

sisting of only central inversion and the identity transformation we 

have H = 0 for odd r and, therefore, p = 0. For even P we have p = 3’ 

and, in this case, the tensor of even order has the most general form. 

The scalar coefficients ks in equation (1.3) are, in the general 

case, functions of the comnon invariants of the tensors T,, . . . . T,,, and 

of any number of given scalars (e.g. temperature, concentration, etc.). 

Some of the common invariants may be constant parameters, others may be 

variable. We shall denote the complete system of coavnon invariants [9, 

lOI of the system of tensors T,, . . . , T, by R,, . . . , $7. 

It follows from the completeness of the system of invariants that 

every invariant J formed from the components of the system of tensors 

T 1’ -**9 T/n satisfies the functional relation: 

J = f (Q,, . . ., QN) 

.By definition, the invariants Ri retain their values in their same 

forms as functions of the components for any of the transformations of 

coordinates. These invariants can be obtained with the aid of the opera- 

tions of multiplication and contraction. In this case the invariants are 

homogeneous polynomials [9,101 in the components of the tensors T,, 
T *-*f m* 

Let us assume that among the tensors T 
. . . . T, (I<v<m) 

!’ *-*’ T,,,, the tensors T,,, 
are constant parametric tensors. Let the set of 

tensors TV, . . . , T,,, admit the finite syrnnetry group G*. Let us fix the 
values of the components of the tensors TV, . . . . T, given in the coordi- 

nate system Xc. After this is done the invariants Ri reduce to oi, which 

are functions only of the components of the tensors T,, . . . , TV_, . ‘Ihe 
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equations oi = 'i are true only in the coordinate system xi; in other 
coordinate systems these equations are not in general satisfied. How- 
ever, the equations will be satisfied for all transformations of co- 
ordinates determined by the group W, since for these transformations 
all the tensors TV, . ..) T, are invariant. lhe quantities oi will not 
in general be invariant under any arbitrary transformation of coordi- 
nates. It is clear that some ai, those which depend only on the com- 
ponents of the tensors TV, . . . . 
tensors T,, 

?', or only on the components of the 
T ‘a*, “-1, will not depend on the transformation of coordi- 

nates. It is obvious that all the quantities oi as functions of the com- 
ponents of the tensors T,, . . . . T v_l may be regarded as invariant with 
respect to the group @. Thus, the invariant coefficients KS in formula 
(1.3) will be functions of the Si. The quantities KS may be considered 
as functions of only the invariants oi under transformations of coordi- 
nates in the group G*. 

The invariants oi are analogous to the invariants of an integrity 
basis. lhe quantities oi coincide with an integrity basis for proper 
choice of the complete system of invariants Ri. In the general case vari- 
able, functionally independent invarisnts have special significance. 
Functionally independent invariants can be selected in various ways. 

'Ihe actual construction of the tensors HS in terms of specified de- 

fining tensors T,, . . . . T, is always possible and suitable general 
methods will be exhibited in examples. 

The linear independence of the tensors R, can be established directly 

on the basis of geometric considerations or by verification with the 
aid of the appropriate determinants or by other general methods. In 
particular, the tensors H, and fiS are linearly independent if they are 

orthogonal or the s~etry'groups zf H 
Sf 

and HS2 do not coincide, since 

otherwise these two tensors would be proportional, which would contra- 
dict their conditions of symmetry. However, tensors which have the same 
symmetry group may be linearly independent. 

Let the synvnetry group G, correspond to the tensor R,. In a number of 
cases it is convenient and advantageous f19I to choose the tensors H, 

so that 

It is apparent that it is always possible to take as the first q 
(q\<p) linearly independent tensors the tensors H,, . . . . H4, which de- 
pend either only on the fundamental tensor g or on g and the third-order 
tensor E. 
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B = I g” p (3,3za, - ~~39~ + 3~8~ - 3h3, + 3~~3% - 38993 (2.31 

These tensors correspond to isotropy with respect to the full or the 
prtiper orthogonal group. ‘lhe isotropic tensors R,, . . . . ii of order 
are well known from the literature 13,9,10,301. In three-kmensional 

r 

space the maximum number q for isotropic tensors of order r equals 130’1 

r==l 2 3 4 5 6 7 8 9 10 

q=O 1 1 3 6 15 36 91 232 603 

At1 isotropic tensors of order r are isomers of the tensor H,, where 

J$“‘a’ =: gala* _ * . gvr-1 
(r = 2k) 

c”‘“’ =: E++aapay . . . gar-lai (r = 2k + 1) 

The number q is equal to the number of different, linearly independent 

isomers of the tensor H,, . . taking account of the symnetq of the CONGO- 

nents of the tensor gaJ. 

If the number r is odd, then q = 0 for the full orthogonal group; all 
tensors of odd order which are invariant under the full orthogonal group 
reduce to zero. Tensors of odd order which are invariant with respect 
to the orthogonal group of proper rotations, with A = laf;.l = 1, can be 
non-zero only for r 23. For r = 3, we have H, = B and, therefore, q=l. 

The presence of symnetry of tensor functions with respect to some 
group of permutations of the indices will, generally speaking, decrease 
the numbers p and q. Formulas for tensor functions having certain sym- 
metries with respect to some indices are always easily obtained from 
the general formulas by using the operations of symnetrization and 
alternation on the proper indices, retaining in the process only the 
1 inearly independent terms. 

3. Tensors which specify the geometric symmetry of 
oriented media and crystals [291. A medium is called isotropic if 
all its properties at each point are invariant under the group of 
orthogonal transformations. We can distinguish between the following 
two types of isotropic media: 

1) isotropic media with respect to the full orthogonal group of co- 
ordinate transformations with A = f 1, 

2) isotropic media with respect to the group of rotations with 
A = f 1 (gyrotropic media). 
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It is easy to see that in the first case the symmetry properties are 

completely characterized by the fundamental tensor g. The condition of 

invariance of the co~onents of the tensor g can be considered as the 

condition which defines the infinite class of all real matrices which 

are elements of the full orthogonal group. 

‘l&e group of rotations with A = + 1, which defines gyrotropic media, 

is a subgroup of the full orthogonal group. This subgroup can be singled 

out by supplanting the condition (2.2) with the additional requirement 

of invariance of the components of the tensor E defined by formula (2.3). 
Therefore, the infinite set of elements of the group of rotations is de- 

termined completely by the condition of invariance of the tensors g and 

E. 'lhese two tensors may be considered as the tensors which determine 

the group of rotations with A = f 1. 

Later we shall use the abbreviated symbols proposed by Shubnikov [15, 

161 as notation for symnetry groups. According to these rules, the full 

orthogonal group is denoted by the symbol q'co x m (the generating ele- 

ments of the group are: intersecting axes of infinite order and a re- 

flecting plane of symmetry ml. 'The group of rotations corresponds to 
the symbol @/a. 

Results are given in Section 2 on the genexal form of tensor func- 

tions for tensors of any order when isotropy is present, i.e. when the 

arguments are only g or g and B. 

‘lhe simplest example of an anisotropic medium is the oriented medium. 

We shall call a medium an oriented [texturedI medium if all its proper- 

ties at each point are invariant under an infinite orthogonal group con- 

taining rotations of arbitrary angle about some axis. Obviously, the 

symmetry groups of oriented media are subgroups of the full orthogonal 

group. 

A simple analysis shows that only seven different types of oriented 

media are possible, including the two types of isotropic media. 'lhe 

appropriate geometric illustrations for the different types of oriented 

media and the corresponding tensors and vectors which specify the sym- 

metry groups of the oriented media are given in the table below. The 

correctness of these results is easily verified directly. 

An anisotropic medium with a continuous or discrete structure is 

called a crystal if it is possible to introduce a system of triply 

periodic Rravais lattices (with the same periods in the various lattices 

in a fixed coordinate system) having the same geometric properties as 

the medium under consideration. The set of l3ravais lattices with given 
periods can admit finite point synnretry groups. The form of these groups 

depends on the structure of the set of lattices being examined and on 
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the elementary parallelepiped of periods. 

As is well known [2,161, there are only 32 different synznetry classes 
of crystals described by finite point groups. In the table (pp. 608,609) 
the characteristic data are presented for all 32 crystal classes; the 
corresponding geometric figures illustrate each synvnetry group. 

lhe unit vectors el, e2, e3 form the orthogonal crystallographic 
basis. ‘Ihe orientation of this basis relative to the figure of synvnetry 
of the crystal is indicated in the sketch. At the upper left of each 
box the notation of the corresponding group according to Shubnikov is 
given. Moreover, each box contains symbols we have used for a set of 
simple tensors which characterize and specify the given group. ‘Ihe de- 
finitions of these tensors are given by formulas which also appear in 
the same table.* 

Let us consider the tensors which determine the symmetries of the 

groups of the cubic system. We shall prove that the tensor 0, is in- 
variant under a group of 48 transformations which give an isomorphic 
representation of the group 6-/4, and that there are no other trans- 
formations under which the tensor Oh is invariant. To carry out the 
proof let us find all real transformations under which the tensor 0, is 
invariant. 

The condition of invariance of the contravariant components of the 
tensor 0, are equivalent to the following system of nonlinear al ebraic 
equations for the nine elements of the matrix of transformation ‘fi . II acj 

aalaPla*la81 + aa,aP,a*,as2 + aa aP ay ag - 
-i 

z 
3 3 3 s- 0 (3.1) 

The right-hand side is to be set equal to unity if a = p = y = 6 and 
to zero in the remaining cases. Now setting a = p and y = 6 for a f y, 
we obtain the equations: 

(a%)” (ayJ2 + (aa2j2 (ay2)2 + (aa3)2 (ay3)” = 0 @#r) (3.2) 

It follows from (3.2) that 

cZai ay* = 0 (3.3) 

Since the determinant 1 aai 1 + 0, we conclude from (3.3) that there 
is only one non-zero element in each column and in each row of the 
matrix II cai II - 

* In this table and in what follows, powers of vectors are to be under- 
stood as dyadic or polyadic products. 
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Oriented Media 
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6:m 
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E=eleaa- e3ele3 + e3e3el - e3ee + e3w3 - wse3 = 

= A (aim - wwc+a + NWI - waw + fwl% - WMd 

Q = ele2 - WI= (aad - d$xPS a,ap = dv:, (3,3p - apa,) 

0, = e14 + e4 + es4 = (nalaPlaYla’~ + a”2aQ~aY2as2 + aU3ap3aY3a63) 3&3,36 

T,, = eh? -I- e&%? i- e&?, T, = tim + v-4 -(- e.sh + eseael + each + elesea 

D, = e13 - e%* - e&ea - e$+~?~, Dti = es (e13 - e1e22 - ezelea - ea%) 

D, = (4” - e@? - mea - e&?d2, Dti = h11eL2 + h2$?+ kses* = 

= li%“~aQ;3,3* = dap3a3p (a”# I,” # I,” # h” # 0, dd = db) 

C$=D,, .’ + d3eiei = CaP3,ap; @ij _ _ -uoii#O 

Trigonal System 

3-m 

Rhombic System 

eJi 

2.m 

M 0 %P3 

Honocl inic System Triclinic System 

cY=p=90° Y#90” 
a#g+ y+a 

a,p.y*90° 

2 I 7 

M did D,,,E,e, 
I77 

D,,,e, ,ei 

eJ 
e, & I 

e2 
e,,e,,e, 



610 V.V. Lokhin and L.I. Sedov 

Since (~2~~)~ + (aaX,) + (aa,) = 1 f or a = p = y = S, in accordance 
with (3.1), the following equality holds for each real non-zero element 
of the matrix II aai II 

UP* = fl (3.4) 

Enumeration of all possible cases of (3.3) and (3.4) shows that the 
matrices consisting of the elements (uP,)~, which are either equal to 1 
or 0, can have the following forms: 

A system consisting of only six matrices has been obtained. If, in 
accordance with (3.4), account is taken of the possibilities of differ- 

then each of the matrices (3.5) generates eight 
matrices for the matrices corresponding to the 

As is known, by the definition of the synrnetry group of the cube g/4, 
the system of matrices of the type (3.6) for each matrix of the system 
(3.5) forms the complete group of transformation matrices for symmetry 
of the cube of the group g/4, and consists of 6 x 8 = 4% orthogonal 

matrices. Thus, every matrix corresponding to a solution of the system 
of equations (3.1) must be one of the 48 matrices of the system (3.6). 
On the other hand, it is easy to assure oneself that the converse pro- 
position is also true: each matrix of the system of 48 matrices which 
has been found provides a solution of the system of equations (3.1). 

Let us now find the matrices of the group of transformations under 
which the tensor Td is invariant. The conditions of invariance of the 
contravariant components of the tensor Td are equivalent to the follow- 
ing system of nonlinear algebraic equations for the nine elements of 
the transformation matrix, aCj 
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The right side of (3.7) should be set equal to 
all different and to zero if at least one pair of 

Let us take the equations of (3.7) for which y 
have the form 

aa~u~~u~~ + ua*u~~~p~ + ua,alJ,a~, = 0 

Since laijl # 0, it follows from the system of 

rz$z~j = 0 

I). n ere 

of theJindices on 

a, p, y 

= (i = 1,. . . ,6) (3.11) 

may easily seen that 

Tn the general in order to obtain a representation of 
of the invariance the tensor 

must be supplemented the condition invariance of g, 
since only in this case will the conditions (3.12) of 
the definition crystal synnnetry groups satisfied.* 

* is easy to verify that = 1, 2g Td : 

holds, where is carried to two 
similarly it does 

g is invariant, under the transformation (3.10) 
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lhe system of matrices (3.10) together with the conditions (3.13) de- 

termines the 48 matrices of the synvnetry group s/4. However, the addi- 

tional equalities (3.11) select a subgroup of 24 matrices for which 
either oi = bi = ci = 1 or two elements of the three numbers a;, bi, Ci 

are equal to -1. F or instance, we obtain only four matrices from the 

first one of (3.10) 

It is easy to verify that the system of 24 matrices which has been 

found and which represents the group 3fl is the solution of the equa- 

tions (3.7) provided that the matrices sought are orthogonal. 

Let us now consider the conditions of invariance of the tensor Th. 
‘he following system of equations for aij, the elements of the trans- 

formation matrix, is equivalent to the condition of invariance of the 

contravariant components of the tensor Th: 

(3.15) 

where the right side should be set equal to 1 for a = p = 2, y = 6 = 3; 

a=p=3, y=6=1; a = p = 1, y = 6 = 2 and to zero in all other 

cases. From (3.15) we have 

for a = p = 1, y = 6 = 1, 3 

a12a13 = 0 7 a1,aa3 = 0 9 alpl, = 0, alflal = 0, al,al, = 0, allaa-, = 0 

for a = p = 2, y = 6 = 1, 2 
(3.17) 

u22u13 = 0 9 a22a23 = 0 9 
a2p1, = 0, aa3a2, = 0, a21a12 = 0, U2,a2, = 0 

for a = p = 3, y = 6 = 2, 3 

a3,a2, = 0 9 a3,a3, = 0 7 a33a21 = 0 3 a3,a3, = 0, a3 a2 1 3 = 0, u3,a3, = 0 

It follows from the 18 equations (3.16) to (3.18) and from the con- 
t dition that \ ;ijl, _fi 0 h at only one element in each row and each column 

of the matrix at 
1 

can be different from zero. If 

al, # O,, then al2 = al3 = aa = a23 = aB1 = aa = 0 

Thus we obtain the matrices 
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for a+ # 0 

lhe three equations (3.15)) when the right side is equal to unity 
and ='I # 0 result in 

(aa,)” (aS# = 1, (u3*)2 (all)” = I, (all)" (a2Jz = 1 (3.20) 

The real solutions of these equations and the equations which are 

obtained analogously for al2 # 0 and al3 f 0 are given by the equalities 

al, = f 1, u2* = f 1, us, = f 1 

ala = f 1, us, = f 1, ua, = f 1 (3.21) 

uis = f 1, a", = f 1, US2 = f 1 

It follows from the values of oi. which have been found that each of 

the matrices (3.19) splits up into iight matrices. We obtain a subgroup 

of the group of matrices C/4, the subgroup consisting, all told, 

3 x 8 = 24 orthogonal matrices. It is clear that the solution obtained 

satisfies the entire system of equations (3.15) and that every real 

solution is contained in the one just found. 

The addition of the tensor E as a defining quantity results in the 
exclusion of matrices with A = -1, since E is invariant only with re- 

spect to the group of proper rotations, for A = +l. 

The set of two tensors 0, and E singles out a subgroup consisting of 
the 24 matrices with A = +l from the group of 48 matrices found for 0,. 

lhe set of tensors g, Td, E also specifies a subgroup consisting of 12 
matrices with A = +l from the 24 matrices which were found for the 

group of g, Td. By actually singling out the proper matrices one can 
show that the transformation groups corresponding to the system of 12 

matrices for the tensors g, Td, E and that for the tensors Th, E co- 
incide. 

'Ihe equivalence of the tensors and the corresponding symnetry groups 

for the tetragonal system which are indicated in the table is a con- 

sequence of the following considerations. 'Ihe symmetry group of the 

tetragonal system can be obtained as the intersection of the correspond- 

ing synvnetry groups of crystals of the cubic system and symnetry groups 

of oriented media. Therefore, the specification of the proper subgroups 
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from the groups of the cubic system and of the oriented media may be 
accomplished by forming sets of tensors from the tensors which specify 
the corresponding cubic syrrnetry groups and those which specify groups 
for the oriented media. It is easy to see directly that the conditions 
of invariance indicated by the sets of tensors for each of the seven 
classes of the tetragonal system determines the group of tr~sfo~ation 
matrices of the corresponding syrrrnetry group of these crystal classes. 

In order to justify the choice of the tensors which specify the sym- 
metries of the hexagonal and trigonal systems, we must consider the 
conditions of invariance of the components of the following pairs of 
tensors DGh and e * DJh and es*, Dsd and es*. The conditions of invari- 

3i ante of the dyad e3 selects only the matrices of the following form 

(3.22) 

as admissible coordinate transformation matrices. It follows from the 
invariance of Dsh or Dab or Dsd that aI3 = a23 = 0. If we require the 
invariance of the vector e3 instead of es*, we are led to transforma- 
tion matrices of the form 

Since Dsh, D3h and D3d are expressed in terms of the basis vectors 
el and e2 only, the invariance of these tensors is related to the struc- 
ture of the second-order matrices: 

(3.24) 

In order to determine the structures of the matrices D, it is con- 
venient to introduce a coaqlex basis by means of the formulas 

jl = e, + ie,, j, = e, - ie, 

In this basis the tensors D,,, D6h and D,d take the form: 

2Dg, = jl* i- jBs, 4Dti = (f: + ja*)zv 2% = es (jQ + jZg) 

The conditions of invariance of these tensors in the real basis can 
be rewritten as conditions of invariance in the complex basis. If the 
transformation .formulas of the complex basis have the form 
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then the relation between the matrices 

mined by the equations 

11 aij )I and 11 bij 11 is deter- 

(3.25) 

The condition of invariance of the tensor L& leads to the following 

system of equations for the bLj 

In expanded form this system is equivalent to the equations: 

(b”J” + (bTJ* = 1, 
(PJ8 + (bsJ8 = 1, 

b’, (bB,)* + bl, (b*~)~ = 0 
PI (PJ2 + bS2 (Pa)” = 0 

(3.26) 

All solutions of (3.26) satisfying the condition 1 b' .I f 0 are easily 

found from these equations. Since the aSj are real, it #allows from 

(3.25) that br,- gsz and b',= g21. 

Taking this into account, we obtain six matrices for II b’j II : 
(3.27) 

The orthogonality of the corresponding matrices (3.22) is obtained 

automatically. 

By use of formulas (3.27), (3.25) and (3.22) it is easy to write out 

the 12 matrices corresponding to invariance of the tensors D,,,, ea2 

which characterize the class m x 3 : m of the hexagonal system. Ihe in- 

variance of D,^, es determines six matrices obtained from (3.23), (3.25) 
and (3.27) corresponding to the class 3 x m of the trigonal system. 

The conditions of invariance of D,, and es2 modify equations (3.26) 

somewhat. ‘Ihe solution of the corresponding equations leads to a system 

of twelve matrices. The first six of these, which correspond to the in- 
variance of e3, coincide with the matrices of the class 3 x m(D3,,, es), 

and the other six are obtained from the first ones by changing the signs 

of all the components of the matrices. The conditions of invariance of 
D ah and es2 lead to matrices of the type (3.22). In the corresponding 

equations of type (3.26), +l must be written instead of +l. As a con- 

sequence of this, the corresponding solution contains the twelve 
matrices of the class m x 3 : m and, in addition, the following twelve 
matrices: 
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I” ” *!I* IH ” *!I 118’ i *!A . 
1” ; *!I, 11; I *iI, 11: H’ *J (r=exp3 
The corresponding real matrices are easily written out with the aid 

of formula (3.25). 

The tensor parameters for all the remaining classes of the hexagonal 

and trigonal systems are easily obtained by considering the inter- 

sections of suitable groups whose tensor characteristics have already 

been established. 'lhe reason for this is that the synrnetry groups of 

these classes are subgroups of the symnetry groups which have been in- 

vestigated above. 

As for the rhombic, monoclinic, and triclinic systems, the tensorial 

characteristics indicated in the table are immediately apparent. It is 

clear that the corresponding sets of tensors which specify the syaraetry 

groups are not uniquely determined. 

In each case, another system of tensors having a one-to-one relation 

with the system given in the table may replace the latter. In particular, 

the number and powers of the tensors in a system need not remain the 

same. For example, instead of the tensors indicated in the table, the 

following correspondence of tensors and groups may be used:* 

rn-2:m G ez2, es2, 2 e12, e22, e3, E 

2:2 e12, e22, es2, E, m elv e,, ea2 

2.m q2, e22, es, 2 e1e2, eles, e2es 

2: m e12, e, , 2 es2, Q, 

Each tensor of this system can easily be expressed in terms of the 

tensors given in the table. The inverse relations are immediately 

obvious. 

'lhe problem of determination of tensors which specify the symmetry 

groups of crystals and oriented media has been considered above. 'Ihe in- 

verse problem of determination of the orthogonal symmetry groups corre- 

sponding to a given tensor has been solved in important special cases. 

* Products and powers of vectors are to be understood as dyadic products. 
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4. Tensor functions of tensors characterizing the geo- 
metric properties of oriented media and crystals. General 
formulas of the type (1.3) are given below which are valid in arbitrary 

coordinates for the co 
.‘?g 

onents of vectors A’, second-order tensors A'J, 

third-order tensors A’J , and fourth-order tensors A ijkl for oriented 

media* and crystals. these tensors are functions of the tensor arguments 

in the table which determine the various symnetry groups. 

Since the simultaneous invariants of the tensors which determine the 

symmetry groups are absolute constants, the invariant coefficients ks 

(s = 1, . . . . p) are numerical constants or functions of certain scalars 

which may also be present in the list of defining quantities in addition 

to the specifying tensors. 

Only p linearly independent terms are written out in the formulas. 

The choice of the terms may be changed; but in every other case a proper 

choice of terms can be represented as linear combinations of the terms 

written out in the formulas. 

Ihe problem of selection of linearly independent tensors may prove to 

be important when using various supplementary hypotheses about the 

character of the functional relations (linear dependence on certain com- 

ponents, etc.). 

The known results** when the following symmetry conditions are used: 

A’j = Aji 
, 

Aijk = Aikj, Aijkl = A$k, Aijkl = Ajikl, Aijk’ = Aklij 

are easy to obtain from the formulas given. 'Ihe above conditions are 

fulfilled when additional limitations are imposed on the invariant co- 

efficients. Proper formulas are obtained from the ones presented by 

means of the operation of synunetrization. 

Oriented media 

Class oofoo-m (g) 

A” = 0, Aij = kgij, Aijk = o, Aijkl = klgijgkl + kzgikgP + kggilgjk 

Class 00 / 00 (g, E) 

Ai = 0. Aij = kgij, Aijk = &jk, Aiikl = AW tm,_smj 

* Analogous formulas containing errors were published in [281. The 

corrected formulas are given here. 

** (See preceding footnote) 
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Class m.oo:m (g,B==*a) 

Ai - I), Aij = klgij + wij, A”jk = *, Aijkl = AW (m / atSm) + agfj2’ + 

+ BgkBjl + k,$‘Bjk + k,gk’Bfj + k&#k + kogikg”’ + kIoljijBkf 

Class 00:2 (g,B=erg,iq 

A* = 0, Aij = klrr”i + k&j 

Afjk = kl&jk + k,BfaE”jk + ks,@iaBka, Aijkl =: Aiikl (m.oc : m, 

Class 00 : m (g, B = e*S, B = q* - e& 

Ai = 0, A’j = k$j + k&j + krQij, Aijk = 0 

A 
ijkl Aijkl = (m-00 : m) + kllgijQk’ + k,*gikgil + kl$Qjk + kl,~k’p’i+ 

+ ktr,gjzQfk + k.lclgskQ1” + k~,B~j~k~ + kl$fkQP + k&‘jBk’ 

Class oo-m (g, b = Q) 

AI = kbi, Aii = klg”j + wfbj, 

A 
ijk 

= k*g”jb” + kSgikbj + k~~jkbf + ~bibjbk 

A 
ijkl 

=A iikz (tw / oo .m) + k&‘j&“b’ + &dkk’b’ + ks$bjbk + k,gk’b’bj _+ 

+ kagjlbibk + k,qjkbib’ + kl&ibjbkb’ 

Class 00 (g, b = e3, E) 

Af = k&f, Aij = klgfj + habibi + k3Efjubb, 

A 
fjk 

= klgiibk +-kpg”bj + kSgjkbi + 4bfbjbk + hQfibk + krQtkbj + &Qjkbf 

A 
fjkl 

= AijK1 (oo mm} + k,,g’jQk’ + k~~~~k~j~ + k~~~~i~ik + k~*~kl~~ + kxsgj’g* + 

+ klegjkQil -c k,,bfbjQkl + k,ebfbkS$r + kloQiibkb’ (Q’j = Eijab Q ) 

The cubic system 

Class 6/ 4 (Oh) 
Ai = 0, Afj = kgfj, Afjk -_ 0, Afjkl +r Afjkl + / m.m) + hohfikl 

Class 314 (Oh, E) 

Ai =i 0, A”j = kgij, A’% = kE*jk, Aijkl = Afjkl @/4j 

Class 3 / z (g, T& 
Ai = 0, A’j r= kg’j, A’@ = wdW, A’jkr rz Aijkl @ /4) 

Class 3 / 2 (g, E, Td) or Wh, w 

Ai=O, Aij = kgij, Aijk -_ k#k + kzTdfjk 

A 
fjkl 

= A’j” (i? / 4) + ksT,‘jki + k*T~fl~k + k,T~~j’ 
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Class 6/2 (!P,) 

Ai = 0, 
A0 = kgG, .iik = o AWl = Aijkl (3 , 2) 

TIze tetragonal system 

Class m-4 : m (Oh, B I= ess) 

A'= 0, Aij=Aii (m.oo : m) = klgii + k&j 
ijk 

A, =o A 
ijkl 

=A 
ijkl 

(mew : m) + kllOhrjk 

Class 4-m (g, Yd, B = eaa) 

Ai = 0, A'i = k,gij .+ kzBij 

A 
ijk = klT,ijk + klT,‘jaf( ; + ksTdikaB f ; , Aijkl = Aijkr (m .4 : m) 

Class 4 : 2 (O,,, B = e.?, E) 

A’ = 0, Aij = klgij + k8ij, Ai’k = Aijk (w : 2j, Aiikl = Aijkl (ma4 : ml 

Class 4 : m (Oh, P = el% - eel, B = es’) 

Ai = 0, Aii= Aij (= : m), A'jk = 0 

A 
ijkl 

A 
ijkl 

= (-J : m) -I- &oO,, iikl + k,&jklaQ : ; 

Class z (8, T,, P = elez - eel, B = e3) 

A’ = 0, A’j = A’j (oo : m), Aijk = A 
ijk - 

(4-m) + kdTd ijapk * + 

+k,n:~Tdnjk+ksR:~Tdai~BLp, =A'jkz(4:ln~a Atjkl 

Class 4.m (Oh, b = e3) 

Ai= fii, A"j = k,gij + k2bibj, Aljk ” 
= Ayk (co.m). A 

i# = Aijk’ (m-4 : m) 

Class 4 (0,, b = 4, E) 

Ai = kbi, A”j = klgii + kzbibi + k3Qii ( # = ,@a a,) 

A 
ijk ijkl 

= Aijk (co), Aip' = A (c,c,) + kloOhijk' + kelq,jklaQ:; 

The hexagonal system 

Class m.6 : m (D,,, B = e32) 

A"= 0, Aii = k,gij + kaij, Aijk ; 0, AW -_ AGkl (mam : m) 

Class m-3 : m (D3,,, B = e$) 

Ai= 0, Ai = klgii + ksBii, ALk = kD,hW, Aiikl I; Aiikl (me= : m) 

Class 6 : 2 (Dsh, B = es2, E) 

A'= 0, A'i = klgij + kaij, Aiik = Aijk (= :2), Ai,jkl = Aijkl (m.00 : m) 
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Class 6 : m (DOh, B = e#, &2 = e,es - tieI) 

A’ = 0, A’j = A*j cw : m), AQ* = *, AW = Aijki + : m) 

Class 3 : m (Da,,, B = es=, a = qep- ~4) 

A’ = 0, jj = Atj tQ, : m), Aijkl = Aiikl (oo:m.) 

Class 6.m (q,,,, b L es) 

Ai= a', A') = klg*j + wibi, AGk = Aijk tM,m), A'jkl = R*jkl tmemt 

Class 6 (Dahr b = es, jtl) 

The trigonal system 

Class %.m(Dsdt B = e#) 

Ai = 0, A’$ = &$j + k&‘j, A”jk = 0 

A 
ijkl =i: A’jkL (mew : m) + kllD,‘jkl + l@,,j”“’ + klJIMkijz + k&,“j” 

Class 3 : 2 (I.&, B = erg, E) 

A’ = 0, A’j = k,gii + k&j, _~ijk = Aijk (= : 2) + k&f 

A 
ijkl 3 AfjkZ 

(m- : 4 f kd$, 
ijaE 

; 1: + k~~aijD~~~ : ; + 

+ k&+Dsh :’ : ; + k.rrEkj D,,: : ; 

Class 6 (I&, B = f$, a = e,ti - WI) 

A’ = 0, Aii z Aij (oo : m), Aijk I 0 

Aiikt = Aijkf (w : m) + kgODgdijkL + kalDnajikz + k9$sdkijr + k&&lijk + 

+ kdwijka Q f ; + k&&juradZ f ; + kg,&sdkijaQ : ; + kzTD,‘ijaS-2 ” (r 

Class 3-m (Z& b = Ed) 

Ai = k&f A’j = klg*j + kabibj, Aijk =: A”jk (w .m) + k&s,ijk 

Atikl = A’#’ (00 4 -I- kuD,h ijkb’ + k,9,,,‘j’bk + k13D,,ik’bj + k&,,“jbi 

Class3 (Z&, b = ea, E) 

Ai = kbi, Aij = Aij (m) 

A’% = Afjk (_) + k,,Dh!jk + kef) ij=Q k . A ijkl 
3h .a’ 

=A ijki a 
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‘The rhombic system 

A’@ e 0 t 
AtjkZ = ktg’jgk’ + f$q+kgjt + kgg”gik + k~~iiD~~kl + krgikDsh” + 

i- keg”‘Dshjk 

. . . . 

+ fd,,‘jgk’ + ksD~,,akg” + k~D,,“g’” + klog ij@ + 

+ Sg*Mj’ + klsg”Mj’ + klsMijgkz + kldkgj + klsM”“gik + kl~D8,,‘jDohk’ + 

+ k~~D~~~r~‘k + k~*D~~Mkz + k~~D~~~jz + ~o~ijD~~k~ + ~MiiM~ 

(Mij = D,pDqh; j) 

Class 2 : 2 (D‘&, E) 

A’ = 0, A’j = Afi (m.2:m) 

A tjk = klE’jk + k&‘jaDa; 1: + ksEiKaDeh; f + k&j”M “; + 

j* 
-i- MeaM. o + kd& 

faE* j* cI. @MPk, Aijkr = Aiikr (m.2 : m) 

Class 2-m .(I&, b = ea) 

=t kbi, Aij _ A’j 
. . . . 

Ai (m-2 : m) = kag” + kabtbl + kQth ij 

A 
tjk = k,gijak + Lgikbj + kSgkjbi + ~bibjbk + ~D~~ijbk + ~~~ik~j + &Da%’ 

Aijkl =E Aijkr (m a2 : m) 

The monoclinic system 

class 2 (Dzh, E, b = es) 

Ai = kbi, Aij = A”j (2 : m), 

AW 
= klg’jbk f kzgikbi + k8gikbi + kpb”bjbk + k6DSh:jbk + wzhfkbj + k,D,.hkjb’ + 

+ kdjbk + k&?“bj + ktoQkibi+ kllQiaDzll; j b” + klrQiaDti; k bj + klsokaDs;r; bi 

A ijkl 
=A ‘jkr (2 : m) 
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If el, eZ and es2 are taken as the defining tensors instead of Dgh, 

elr e2. the last formula for fourth-order tensors may be replaced by 
the formula 

A, = k’jkreiejeke, + kap33eae~e3e3 + kasspea%.#3%p + k~3a~%~e~%~%~ + 

+ kzasp e,e,e,ea + k3@’ e3eaepe3 + kasPseae3epes + ks3%aaw (*I 

where the summation is carried out with respect to the indices i, j, k, 

1, a, p. which take on only the values 1 and 2. A simple calculation 
shows that there are 41 terms in this formula; their linear independence 
is immediately apparent. 

It is not difficult to see that for tensors of even order. in particu- 
lar, for fourth-order tensors referring to the classes 2 : in, 2 and m 

of the monoclinic system, the corresponding tensor parameters may be re- 
placed by the same system of tensors, elt e2, eS2. The same formulas 
may, therefore, be used. Thus, for all classes of the monoclinic system 

the formula (*) is applicable to fourth-order tensors. 

It is also easy to see that the fourth-order tensors for the rhombic 
system with 21 linearly independent terms can be obtained from the 
formula (*) in which the terms with i = j, k = I; i = k, j = I; i = 1, 

j = k and a = p should be taken. 

Thus, it is clear that in the construGt~on of general formulas for 
tensor functions it is sometimes advantageous to change the original 
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basis of arguments suitably for the particular cases at hand. 

The triclinic system 

Class Z (CT,) 

Ai = 0, -4” is the most general case with nine components 

A 
ijk = 0, Aiikl is the most general case with 81 components 

Class 1 (el, e-2, es) 

All tensors have the most general form if symmetries are absent 

5. Tensor functions for oriented media and crystals with 
additional tensor arguments. We shall now assume that, besides the 
tensors which specify the geometric properties of oriented media or 

crystals, there are other tensors among the defining quantities or in- 

dependent arguments. It is apparent that in this case the syrnnetry 

groups of the set of defining parametric tensors are suitable groups or 

subgroups of oriented media or crystals. Subgroups which differ from 

the crystallographic groups can arise only when considering oriented 

media. If other tensors are adjoined to those which determine a crystal 

symnetry, either some crystal synvnetry group will be obtained again or 

the symmetry group will reduce to the identity transformation. 

All subgroups of a given crystal symnetry group are contained among 

the 32 crystal groups. 'Iherefore, upon addition of other tensors to 

those which specify the synvnetry of the crystal, the symnetry group of 

the new set of arguments will also belong to one of the 32 crystal 

groups. 

A decrease in the number of linearly independent components of the 

tensors defined in the general case can occur only in the presence of 

some corresponding symmetry. It is apparent that simplifications will 

take place in the case of crystals when the set of defining parameters 

admits a nontrivial symnetry group. 

After the determination of the type of crystal synunetry group which 

is appropriate for a set of tensor arguments, one of the formulas of 

Section 4 can be used to determine the structure of the components of 

the tensor function which has been defined. l'hus, it is possible to use 

the formulas of Section 4 to determine the structure of tensor functions 

for crystals in the general case. To ascertain the nature of the 

appropriate formulas it is first necessary to investigate the symmetry 

properties of the set of given arguments. For crystals this is equivalent 

to representing the defining tensors in terms of the set of tensors 

which characterize the crystal classes, as indicated in the table. 
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The argument given above permits us to analyze a large number of 

special cases easily, when the supplementary tensors are special or 

have a special form in the crystallographic axes. When additional 

tensors are present the scalars ks are, in the general case, functions 

of the cornnon invariants of the supplementary tensors and the tensors 

which specify the syazaetry of the oriented media or crystals. 

supplementary tensors can give rise to variable simultaneous in- 

variants. Generally the number of functionally independent invariants 

is equal to the number of functionally independent components of the 
variable tensors. In certain special cases the number of functionally 

independeut components can be smaller. 

It is possible to select the scalar invariants oi (in terms of which 

the kS are defined) so that they retain their values for the different 

variable tensors which are equivalent from the point of view of synznetry 

of oriented media or crystals. These arguments-, which are determined in 

a fixed coordinate system, may differ from the invariants R, for arbi- 
trary coordinate transformations but coincide with them (oi = Qi) in 

the given fixed coordinate system. 

6. On the Rlemannirra curvature tensor and a generalization of Schur* 8 
theorem. The theory which has been developed above is directly related 

to all mathematical and physical laws which are formulated as vector or 

tensor equations and which, to some extent. are connected with geometric 

symmetry properties. 

There are a great many important applications; we indicate as ex- 

amples hoohe's law for oriented media and crystals, piezoelectric and 

optical effects, etc. 

As one example we shall consider the Christoffel-Riemann curvature 

tenSOr Rijkl- As is known E281 this tensor is antisymmetric with respect 

to interchange of the indices i and j or the indices k and 1, and is 

symmetric with respect to interchange of the pairs of indices ij and kl. 

In the case of three-dimensional space there are only six independent 

COmpOnentS Of Rijkl’ which may take ou arbitrary independent values. 

These six components determine the six COmPOueutS of the symmetric 

second-order tensor Km”, which may be introduced by the formula 

K 
mn = EiimEklnRijkl 

From this, we have 

1 
R ijkl = z EijmEklnKmn 

As is well known [31], the components of the curvature tensor satisfy 

the Bianchi identity 
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VrRijM + VmRij*r + VnRijrm = O 

where the indices m, n, r are all different and OK is the notation for 
covariant differentiation with respect to the coordinate zK. It may 
easily be seen that Bianchi’s identity is equivalent to the following 
identity in the components of the tensor Km”: 

v=z!?=o (6.3) 

If the curvature tensor admits a symmetry of some type at points of 
the Riemannian space, then on the basis of the theory developed above 
it is easy to write out the general formulas which determine the com- 
ponents of Rijkl and Km” in terms of the tensors which specify the cor- 

responding symmetry group. 

For instance, for symmetries of the type of the oriented media the 

following formulas are valid: 

for the symmetry m/m x m and m/m 

K 
mn = kg’“” 

for the symmetry ~0 x m, m x Q) : m, m : 2, co : m, m 

(6.4) 

K 
mn 

= kgmn + klqrnbn (6.5) 

where bm are the components of the unit vector directed along the axis 
of symmetry. 

Analogous formulas can be written in any case when the components of 
the tensor Kmn admit any finite symmetry group. For instance, for sym- 

metry corresponding to any one of the five classes of the cubic system 
we have: 

K 
mn = kgmn 

Therefore, in this case the tensor Kmn is spherical, just as in the 

case of complete isotropy. Corresponding formulas follow from (6.2) and 
(6.4) to (6.6) for the components of the tensor Rijkl. 

From (6.4) and Bianchi’s identity (6.3). we have 

g”“V, k = 0 

The equation (6.7) expresses a well-known theorem of Schur. According 
to Schur’s theorem, isotropy of the curvature tensor at each point 
implies the constancy of the curvature in the whole space. Indeed, we 
obtain 
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k = const 

from (6.7). 

A generalization of Schur’s theorem is contained in the proof given 
above. This generalization consists of the fact that it is not necessary 
to require complete isotropy of the curvature at each point of the space 
for Schur’s theorem to hold. It is sufficient that at each point the 
symmetry conditions of the group 3/2 be satisfied, i.e. that the com- 
ponents of the tensors K”n and RijkZ be invariant under the 12 trans- 
formations of the symmetry group 3/2. 

If the curvature is determined at each point by constant, collinear 
vectors b’. then Bianchi’ 8 identity gives: 

vx k f b’b”vpkl = 0 

Equations (6.6) are a system of equations imposed on the curvature 
f&r the corresponding Riemannian spaces. 

The authors express their gratitude to Iu.1. Sirotin, whose conversa- 

tions enabled them to clarify matters in crystal physics. a branch of 
science which was new to them. 
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